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We show that under certain conditions, a language model can be trained on the basis of a second
language model. The main instance of the technique trains a finite automaton on the basis of
a probabilistic context-free grammar, such that the Kullback-Leibler distance between grammar
and trained automaton is provably minimal. This is a substantial generalization of an existing
algorithm to train an n-gram model on the basis of a probabilistic context-free grammar.

1. Introduction

In this article, the term language model will be used to refer to any description that assigns
probabilities to strings over a certain alphabet. Language models have important appli-
cations in natural language processing, and in particular in speech recognition systems
(Manning and Schütze, 1999).

Language models often consist of a symbolic description of a language, such as
a finite automaton (FA) or a context-free grammar (CFG), extended by a probability
assignment to e.g. the transitions of the FA or the rules of the CFG, by which we obtain
a probabilistic finite automaton (PFA) or probabilistic context-free grammar (PCFG),
respectively. For certain applications, one may first determine the symbolic part of the
automaton or grammar, and in a second phase try to find reliable probability estimates
for the transitions or rules. The current article will be involved with the second problem,
that of extending FAs or CFGs to become PFAs or PCFGs. We will refer to this process
as training.

Training is often done on the basis of a corpus of actual language use in a certain
domain. If each sentence in this corpus is annotated by a list of transitions of a FA rec-
ognizing the sentence, or a parse tree for a CFG generating the sentence, then training
may consist simply in relative frequency estimation. This means that we estimate proba-
bilities of transitions or rules by counting their frequencies in the corpus, relative to the
frequencies of the start states of transitions or to the frequencies of the left-hand side
nonterminals of rules, respectively. By this estimation, the likelihood of the corpus is
maximized.

The technique we introduce in this article is different in that training is not done on
the basis of a finite corpus, but on the basis of an input language model. Our goal is
to find estimations for the probabilities of transitions or rules of the input FA or CFG,
such that the resulting PFA or PCFG approximates the input language model as well as
possible, or more specifically, such that the Kullback-Leibler (KL) distance (or relative
entropy) between the input model and the trained model is minimized. The input FA
or CFG to be trained may be structurally unrelated to the input language model.

This technique has several applications. One is an extension with probabilities of
existing work on approximation of CFGs by means of FAs (Nederhof, 2000). The moti-
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vation for this work was that application of FAs is generally less costly than application
of CFGs, which is an important benefit when the input is very large, as is often the case
in e.g. speech recognition systems. The practical relevance of this work was limited
however by the fact that in practice one is more interested in the probabilities of sen-
tences than in a purely Boolean distinction between grammatical and ungrammatical
sentences.

Several approaches were discussed by (Mohri and Nederhof, 2001) to extend this
work to approximation of PCFGs by means of PFAs. A first approach is to directly map
rules with attached probabilities to transitions with attached probabilities. Although
this is computationally the easiest approach, the resulting PFA may be a very inaccurate
approximation of the probability distribution described by the input PCFG. In particu-
lar, there may be assignments of probabilities to the transitions of the same FA that lead
to more accurate approximating language models.

A second approach is to train the approximating FA by means of a corpus. If the in-
put PCFG was itself obtained by training on a corpus, then we already possess training
material. However, this may not always be the case, and no training material may be
available. Furthermore, as a determinized approximating FA may be much larger than
the input PCFG, the sparse-data problem may be more severe for the automaton than it
was for the grammar.1 Hence, even if sufficient material was available to train the CFG,
it may not be sufficient to accurately train the FA.

A third approach is to construct a training corpus from the PCFG by means of a
(pseudo-)random generator of sentences, such that sentences that are more likely ac-
cording to the PCFG are generated with greater likelihood. This has been proposed
before by (Jurafsky et al., 1994), for the special case of bigrams, extending a non-
probabilistic technique by (Zue and others, 1991). It is not clear however whether this
idea is feasible for training of finite-state models that are larger than bigrams. The reason
is that very large corpora would have to be generated in order to obtain accurate prob-
ability estimates for the PFA. Note that the number of parameters of a bigram model is
bounded by the square of the size of the lexicon; such a bound does not exist for general
PFAs.

The current article discusses a fourth approach. In the limit, it is equivalent to the
third approach above, as if an infinite corpus were constructed on which the PFA is
trained, but we have found a way to avoid considering sentences individually. The key
idea that allows us to handle an infinite set of strings generated by the PCFG is that we
construct a new grammar that represents the intersection of the languages described by
the input PCFG and the FA. Within this new grammar, we can compute the expected
frequencies of transitions of the FA, using a fairly standard analysis of PCFGs. These
expected frequencies then allow us to determine the assignment of probabilities to tran-
sitions of the FA that minimizes the KL distance between the PCFG and the resulting
PFA.

The only requirement is that the FA to be trained is unambiguous, by which we
mean that each input string can be recognized by at most one computation of the FA.
The special case of n-grams was already formulated by (Stolcke and Segal, 1994), realiz-
ing an idea envisioned before by (Rimon and Herz, 1991). An n-gram model is here seen
as a (P)FA that contains exactly one state for each possible history of the n−1 previously
read symbols. It is clear that such a FA is unambiguous (even deterministic), and that
our technique therefore properly subsumes the technique by (Stolcke and Segal, 1994),
although the way that the respective techniques are formulated is rather different. Also

1In (Nederhof, 2000), several methods of approximation were discussed that lead to determinized ap-
proximating FAs that can be much larger than the input CFGs.
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note that the FA underlying an n-gram model accepts any input string over the alphabet,
which does not hold for general (unambiguous) FAs.

Another application of our work involves determinization and minimization of
PFAs. As shown by (Mohri, 1997), PFAs cannot always be determinized, and no prac-
tical algorithms are known to minimize arbitrary nondeterministic (P)FAs. This can
be a problem when deterministic or small PFAs are required. We can however always
compute a minimal deterministic FA equivalent to an input FA. The new results in this
article offer a way to extend this determinized FA to a PFA such that it approximates
the probability distribution described by the input PFA as well as possible, in terms of
the KL distance.

Although the proposed technique has some limitations, in particular that the model
to be trained is unambiguous, it is by no means restricted to language models based
on finite automata or context-free grammars, as several other probabilistic grammatical
formalisms can be treated in a similar manner.

The structure of this paper is as follows. We provide some preliminary definitions
in Section 2. Section 3 discusses how the expected frequency of a rule in a PCFG can
be computed. This is an auxiliary step in the algorithms to be discussed below. Sec-
tion 4 defines a way to combine a PFA and a PCFG into a new PCFG, which extends a
well-known representation of the intersection of a regular and a context-free language.
Thereby we merge the input model and the model to be trained into a single struc-
ture. This structure is the foundation for a number of algorithms, presented in Sec-
tion 5, which allow, respectively, training of an unambiguous FA on the basis of a PCFG
(Section 5.1), training of an unambiguous CFG on the basis of a PFA (Section 5.2), and
training of an unambiguous FA on the basis of a PFA (Section 5.3).

2. Preliminaries

Many of the definitions on probabilistic context-free grammars are based on (Santos,
1972; Booth and Thompson, 1973) and the definitions on probabilistic finite automata
are based on (Paz, 1971; Starke, 1972).

A context-free grammar G is a 4-tuple (Σ, N, S, R), where Σ and N are two finite
disjoint sets of terminals and nonterminals, respectively, S ∈ N is the start symbol, and
R is a finite set of rules, each of the form A → α, where A ∈ N and α ∈ (Σ ∪ N)∗. A
probabilistic context-free grammar G is a 5-tuple (Σ, N, S, R, pG), where Σ, N , S and R are
as above, and pG is a function from rules in R to probabilities.

In what follows, symbol a ranges over the set Σ, symbols w, v range over the set
Σ∗, symbols A,B range over the set N , symbol X ranges over the set Σ ∪ N , symbols
α, β, γ range over the set (Σ ∪ N)∗, symbol ρ ranges over the set R, and symbols d, e
range over the set R∗. With slight abuse of notation, we treat a rule ρ = (A → α) ∈ R
as an atomic symbol when it occurs within a string dρe ∈ R∗. The symbol ε denotes the
empty string. String concatenation is represented by operator · or by empty space.

For a fixed (P)CFG G, we define the relation⇒ on triples consisting of two strings
α, β ∈ (Σ ∪ N)∗ and a rule ρ ∈ R by: α

ρ⇒ β if and only if α is of the form wAδ and β
is of the form wγδ, for some w ∈ Σ∗ and δ ∈ (Σ ∪ N)∗, and ρ = (A → γ). A left-most
derivation (in G) is a string d = ρ1 · · · ρm,m ≥ 0, such that α0

ρ1⇒ α1
ρ2⇒ · · · ρm⇒ αm, for some

α0, . . . , αm ∈ (Σ ∪ N)∗; d = ε is always a left-most derivation. In the remainder of this
paper, we will let the term ‘derivation’ refer to ‘left-most derivation’, unless specified
otherwise. If α0

ρ1⇒ · · · ρm⇒ αm for some α0, . . . , αm ∈ (Σ ∪ N)∗, then we say that
d = ρ1 · · · ρm derives αm from α0 and we write α0

d⇒ αm; ε derives any α0 ∈ (Σ ∪ N)∗

from itself. A derivation d such that S d⇒ w, for some w ∈ Σ∗, is called a complete
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derivation. We say G is unambiguous if for each w ∈ Σ∗, S d⇒ w for at most one d ∈ R∗.
Let G be a fixed PCFG (Σ, N, S, R, pG). For α, β ∈ (Σ ∪N)∗ and d = ρ1 · · · ρm ∈ R∗,

m ≥ 0, we define pG(α
d⇒ β) =

∏m
i=1 pG(ρi) if α d⇒ β, and pG(α

d⇒ β) = 0 otherwise.

The probability pG(w) of a string w ∈ Σ∗ is defined to be
∑
d pG(S

d⇒ w).
PCFG G is said to be proper if

∑
ρ,α pG(A

ρ⇒ α) = 1 for all A ∈ N , i.e., if the prob-
abilities of all rules ρ = (A → α) with left-hand side A sum to 1. PCFG G is said to
be consistent if

∑
w pG(w) = 1. Consistency implies that the PCFG defines a probability

distribution on the set of terminal strings. There is a practical sufficient condition for
consistency that is decidable (Booth and Thompson, 1973).

A PCFG is said to be reduced if for each nonterminalA there are d1, d2 ∈ R∗, w1, w2 ∈
Σ∗ and β ∈ (Σ ∪ N)∗ such that pG(S

d1⇒ w1Aβ) · pG(w1Aβ
d2⇒ w1w2) > 0. In words, if

a PCFG is reduced, then for each nonterminal A, there is at least one derivation d1d2

with non-zero probability that derives a string w1w2 from S and that includes some rule
with left-hand side A. A PCFG G that is not reduced can be turned into one that is
reduced and that describes the same probability distribution, provided

∑
w pG(w) > 0.

This reduction consists in removing from the grammar any nonterminal A for which the
above conditions do not hold, together with any rule that contains such a nonterminal;
see (Aho and Ullman, 1972) for reduction of CFGs, which is very similar.

A finite automatonM is a 5-tuple (Σ, Q, q0, qf , T ), where Σ and Q are two finite sets
of terminals and states, respectively, q0, qf ∈ Q are the initial and final states, respectively,
and T is a finite set of transitions, each of the form r

a7→ s, where r ∈ Q−{qf}, s ∈ Q and
a ∈ Σ.2 A probabilistic finite automatonM is a 6-tuple (Σ, Q, q0, qf , T, pM), where Σ, Q,
q0, qf and T are as above, and pM is a function from transitions in T to probabilities.

In what follows, symbols q, r, s range over the set Q, symbol τ ranges over the set
T , and symbol c ranges over the set T ∗.

For a fixed (P)FA M, we define a configuration to be an element of Q × Σ∗, and
we define the relation ` on triples consisting of two configurations and a transition

τ ∈ T by: (r, w)
τ

` (s, w′) if and only if w is of the form aw′, for some a ∈ Σ, and

τ = (r
a7→ s). A computation (inM) is a string c = τ1 · · · τm, m ≥ 0, such that (r0, w0)

τ1
`

(r1, w1)
τ2
` · · ·

τm
` (rm, wm), for some (r0, w0), . . . , (rm, wm) ∈ Q × Σ∗; c = ε is always

a computation. If (r0, w0)
τ1
` · · ·

τm
` (rm, wm) for some (r0, w0), . . . , (rm, wm) ∈ Q × Σ∗

and c = τ1 · · · τm ∈ T ∗, then we write (r0, w0)
c

` (rm, wm). We say that c recognizes w if

(q0, w)
c

` (qf , ε).
Let M be a fixed FA (Σ, Q, q0, qf , T ). The language L(M) accepted by M is de-

fined to be {w ∈ Σ∗ | ∃c[(q, w)
c

` (qf , ε)]}. We say M is unambiguous if for each

w ∈ Σ∗, (q0, w)
c

` (qf , ε) for at most one c ∈ T ∗. We say M is deterministic if for each
(r, w) ∈ Q × Σ∗ there is at most one combination of τ ∈ T and (s, w′) ∈ Q × Σ∗ such

that (r, w)
τ

` (s, w′). Turning a given FA into one that is deterministic and accepts the
same language is called determinization. All FAs can be determinized. Turning a given
(deterministic) FA into the smallest (deterministic) FA that accepts the same language
is called minimization. There are effective algorithms for minimization of deterministic
FAs.

2That we only allow one final state is not a serious restriction with regard to the set of strings we can
process; only when the empty string is to be recognized could this lead to difficulties. Lifting the restriction
would encumber the presentation with treatment of additional cases, without affecting however the validity
of the main results.
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Let M be a fixed PFA (Σ, Q, q0, qf , T, pM). For (r, w), (s, v) ∈ Q × Σ∗ and

c = τ1 · · · τm ∈ T ∗ we define pM((r, w)
c

` (s, v)) =
∏m
i=1 pM(τi) if (r, w)

c

` (s, v), and

pM((r, w)
c

` (s, v)) = 0 otherwise. The probability pM(w) of a string w ∈ Σ∗ is defined

to be
∑

c pM((q0, w)
c

` (qf , ε)).
PFAM is said to be proper if

∑
τ,a,s: τ=(r

a7→s)∈T pM(τ) = 1 for all r ∈ Q− {qf}.

3. Expected frequencies of rules

Let G be a PCFG (Σ, N, S, R, pG). We assume without loss of generality that S does not
occur in the right-hand side of any rule from R. For each rule ρ, we define:

E(ρ) =
∑

d,d′,w

pG(S
dρd′⇒ w) (1)

If G is proper and consistent, (1) is the expected frequency of ρ in a complete derivation.
Each complete derivation dρd′ can be written as dρd′′d′′′ with d′ = d′′d′′′, where:

S
d⇒ w′Aβ,A

ρ⇒ α, α
d′′⇒ w′′, β

d′′′⇒ w′′′, (2)

for some A, α, β, w′, w′′ and w′′′. Therefore:

E(ρ) = outer(A) · pG(ρ) · inner(α), (3)

where we define:

outer(A) =
∑

d,w′,β,d′′′,w′′′

pG(S
d⇒ w′Aβ) · pG(β

d′′′⇒ w′′′) (4)

inner(α) =
∑

d′′,w′′

pG(α
d′′⇒ w′′), (5)

for each A ∈ N and α ∈ (Σ ∪N)∗. From the definition of inner , we can easily derive the
following equations:

inner(a) = 1 (6)

inner(A) =
∑
ρ,α:

ρ=(A→α)

pG(ρ) · inner(α) (7)

inner(Xβ) = inner(X) · inner(β) (8)

This can be taken as recursive definition of inner , assuming β 6= ε in (8). Similarly, we
can derive a recursive definition of outer :

outer(S) = 1 (9)

outer(A) =
∑

ρ,B,α,β:
ρ=(B→αAβ)

outer(B) · pG(ρ) · inner(α) · inner(β), (10)

for A 6= S.
In general, there may be cyclic dependencies in the equations for inner and outer ,

i.e. for certain nonterminals A, inner(A) and outer(A) may be defined in terms of them-
selves. There may even be no closed-form expression for inner(A). However, one may
approximate the solutions to arbitrary precision by means of fixed-point iteration.
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4. Intersection of context-free and regular languages

We recall a construction from (Bar-Hillel, Perles, and Shamir, 1964) that computes the
intersection of a context-free language and a regular language. The input consists of a
CFG G = (Σ, N, S, R) and a FAM = (Σ, Q, q0, qf , T ); note that we assume, without
loss of generality, that G andM share the same set of terminals Σ.

The output of the construction is CFG G∩ = (Σ, N∩, S∩, R∩), where N∩ = Q× (Σ ∪
N)×Q, S∩ = (q0, S, qf ), and R∩ consists of the set of rules that is obtained as follows.

• For each rule ρ = (A → X1 · · ·Xm) ∈ R, m ≥ 0, and each sequence of states
r0, . . . , rm ∈ Q, let the rule ρ∩ = ((r0, A, rm) → (r0, X1, r1) · · · (rm−1, Xm, rm))
be in R∩; for m = 0, R∩ contains a rule ρ∩ = ((r0, A, r0)→ ε) for each state r0.

• For each transition τ = (r
a7→ s) ∈ T , let the rule ρ∩ = ((r, a, s)→ a) be in R∩.

Note that for each rule (r0, A, rm)→ (r0, X1, r1) · · · (rm−1, Xm, rm) from R∩ there is
a unique rule A → X1 · · ·Xm from R from which it has been constructed by the above.
Similarly, each rule (r, a, s) → a uniquely identifies a transition r a7→ s. This means that
if we take a derivation d∩ in G∩, we can extract a sequence h1(d∩) of rules from G and
a sequence h2(d∩) of transitions fromM, where h1 and h2 are string homomorphisms
that we define point-wise as:

h1(ρ∩) = ρ if ρ∩ = ((r0, A, rm)→ (r0, X1, r1) · · · (rm−1, Xm, rm))
and ρ = (A→ X1 · · ·Xm)

(11)

ε if ρ∩ = ((r, a, s)→ a) (12)

h2(ρ∩) = τ if ρ∩ = ((r, a, s)→ a) and τ = (r
a7→ s) (13)

ε if ρ∩ = ((r0, A, rm)→ (r0, X1, r1) · · · (rm−1, Xm, rm)) (14)

We define h(d∩) = (h1(d∩), h2(d∩)). It can be easily shown that if h(d∩) = (d, c) and

S∩
d∩⇒ w, then for the same w we have S d⇒ w and (q0, w)

c

` (qf , ε). Conversely, if

for some w, d and c we have S d⇒ w and (q0, w)
c

` (qf , ε), then there is precisely one

derivation d∩ such that h(d∩) = (d, c) and S∩
d∩⇒ w.

It was observed by (Lang, 1994) that G∩ can be seen as a parse forest, i.e., a com-
pact representation of all parse trees according to G that derive strings recognized by
M. The construction can be generalized to e.g. tree-adjoining grammars (Vijay-Shanker
and Weir, 1993) and range concatenation grammars (Boullier, 2000; Bertsch and Neder-
hof, 2001). The construction for the latter also has implications for linear context-free
rewriting systems (Seki et al., 1991).

The construction has been extended by (Nederhof and Satta, 2003) to apply to a
PCFG G = (Σ, N, S, R, pG) and a PFAM = (Σ, Q, q0, qf , T, pM). The output is a PCFG
G∩ = (Σ, N∩, S∩, R∩, p∩), where N∩, S∩ and R∩ are as before, and p∩ is defined by:

p∩((r0, A, rm)→ (r0, X1, r1) · · · (rm−1, Xm, rm)) = pG(A→ X1 · · ·Xm) (15)

p∩((r, a, s)→ a) = pM(r
a7→ s) (16)

If d∩, d and c are such that h(d∩) = (d, c), then clearly p∩(d∩) = pG(d) · pM(c).

5. Training models on models

We will restrict ourselves to a few cases of the general technique of training a model on
the basis of another model.

6



Training models on models Nederhof

5.1 Training a PFA on a PCFG
Let us assume we have a proper and consistent PCFG G = (Σ, N, S, R, pG), and a FA
M = (Σ, Q, q0, qf , T ) that is unambiguous. This FA may have resulted from (non-
probabilistic) approximation of CFG (Σ, N, S, R), but it may also be totally unrelated
to G. Note that a FA is guaranteed to be unambiguous if it is deterministic; any FA can
be determinized. Our goal is now to assign probabilities to the transitions from FAM
to obtain a proper PFA that approximates the probability distribution described by G as
well as possible.

Let us define
�

as the function that maps each transition from T to 1. This means

that, for each r, w, c and s,
�
((r, w)

c

` (s, ε)) = 1 if (r, w)
c

` (s, ε), and
�
((r, w)

c

` (s, ε)) =
0 otherwise.

Of the set of strings generated by G, a subset is recognized by computations ofM;
note again that there can be at most one such computation for each string. The expected
frequency of a transition τ in such computations is given by:

E(τ) =
∑

w,c,c′

pG(w) · �
((q0, w)

cτc′

` (qf , ε)) (17)

Now we construct the PCFG G∩ as explained in Section 4 from the PCFG G and the
PFA (Σ, Q, q0, qf , T,

�
). Let τ = (r

a7→ s) ∈ T and ρ = ((r, a, s)→ a). On the basis of the
properties of function h, we can now rewrite E(τ) as:

E(τ) =
∑

d,w,c,c′

pG(S
d⇒ w) · �

((q0, w)
cτc′

` (qf , ε))

=
∑

e,d,w,c,c′:
h(e)=(d,cτc′)

pG(S
d⇒ w) · �

((q0, w)
cτc′

` (qf , ε))

=
∑

e,e′,w

p∩(S∩
eρe′⇒ w)

= E(ρ) (18)

Hereby we have expressed the expected frequency of a transition τ = (r
a7→ s)

in terms of the expected frequency of rule ρ = ((r, a, s) → a) in derivations in PCFG
G∩. It was explained in Section 3 how such a value can be computed. Note that since
by definition

�
(τ) = 1, also p∩(ρ) = 1. Furthermore, for the right-hand side a of ρ,

inner(a) = 1. Therefore,

E(τ) = outer((r, a, s)) · p∩(ρ) · inner(a)

= outer((r, a, s)) (19)

To obtain the required PFA (Σ, Q, q0, qf , T, pM), we now define the probability
function pM for each τ = (r

a7→ s) ∈ T as:

pM(τ) =
outer((r, a, s))∑

a′,s′:(r
a′7→s′)∈T

outer((r, a′, s′))
(20)

That such a relative frequency estimator pM minimizes the KL distance between pG and
pM on the domain L(M) is proven in the appendix.
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trained PFA

PSfrag replacements

G M

G∩

a b

c d

a[1/3] b[1/3]

c[2/3] d[2/3]

q0

q0
qf

qfq1

q1
S → a b [1/3]

S → c d [2/3]

(q0, S, qf )→ (q0, a, q1) (q1, b, qf ) [1/3]

(q0, S, qf )→ (q0, c, q1) (q1, d, qf ) [2/3]

(q0, a, q1)→ a [1]

(q0, c, q1)→ c [1]

(q1, b, qf )→ b [1]

(q1, d, qf )→ d [1]

Figure 1
Example of input PCFG G, with rule probabilities between square brackets, input FAM, the
reduced PCFG G∩, and the resulting trained PFA.

An example with finite languages is given in Figure 1. We have e.g.:

pM(q0
a7→ q1) =

outer((q0, a, q1))

outer((q0, a, q1)) + outer((q0, c, q1))

=
1
3

1
3 + 2

3

=
1

3
(21)

5.2 Training a PCFG on a PFA
Similarly to the previous section, we now assume we have a proper PFA M = (Σ, Q,
q0, qf , T, pM), and a CFG G = (Σ, N, S, R) that is unambiguous. Our goal is to find
a function pG that lets proper and consistent PCFG (Σ, N, S, R, pG) approximate M
as well as possible. Although CFGs used for natural language processing are usually
ambiguous, there may be cases in other fields where we may assume grammars are
unambiguous.

Let us define
�

as the function that maps each rule from R to 1. Of the set of strings
recognized byM, a subset can be derived in G. The expected frequency of a rule ρ in
those derivations is given by:

E(ρ) =
∑

d,d′,w

pM(w) · �
(S

dρd′⇒ w) (22)

Now we construct the PCFG G∩ from the PCFG G = (Σ, N, S, R,
�
) and the PFA

M as explained in Section 4. Analogously to the previous section, we obtain for each
ρ = (A→ X1 · · ·Xm):

E(ρ) =
∑

r0,r1,...,rm

E((r0, A, rm)→ (r0, X1, r1) · · · (rm−1, Xm, rm))

=
∑

r0,r1,...,rm

outer((r0, A, rm)) · inner((r0, X1, r1) · · · (rm−1, Xm, rm)) (23)

8
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To obtain the required PCFG (Σ, N, S, R, pG), we now define the probability func-
tion pG for each ρ = (A→ α) as:

pG(ρ) =
E(ρ)∑

ρ′=(A→α′)∈RE(ρ′)
(24)

The proof that this relative frequency estimator pG minimizes the KL distance between
pM and pG on the domain L(G) is almost identical to the proof in the appendix for a
similar claim from Section 5.1.

5.3 Training a PFA on a PFA
We now assume we have a proper PFAM1 = (Σ, Q1, q0,1, qf,1, T1, p1), and a FAM2

= (Σ, Q2, q0,2, qf,2, T2) that is unambiguous. Our goal is to find a function p2 so that
proper PFA (Σ, Q2, q0,2, qf,2, T2, p2) approximatesM1 as well as possible, minimizing
the KL distance between p1 and p2 on the domain L(M2).

One way to solve this problem is to mapM2 to an equivalent right-linear CFG G,
and then to apply the algorithm from Section 5.2. The obtained probability function
pG can be translated back to an appropriate function p2. For this special case, the con-
struction from Section 4 can be simplified to the “cross-product” construction of finite
automata; see e.g. (Aho and Ullman, 1972). The simplified forms of the functions inner
and outer from Section 3 are commonly called forward and backward , respectively, and
they are defined by systems of linear equations. As a result, we can compute exact
solutions, as opposed to approximate solutions by iteration.

Appendix

We will now prove that the choice of pM in Section 5.1 is such that it minimizes the
Kullback-Leibler distance between pG and pM, restricted to the domain L(M). Without
this restriction, the KL distance is given by:

D(pG‖pM) =
∑

w

pG(w) · log
pG(w)

pM(w)
(25)

This can be used for many applications mentioned in Section 1. For example, a FAM
approximating a CFG G is guaranteed to be such that L(M) ⊇ L(G) in the case of most
practical approximation algorithms. However, if there are stringsw such thatw /∈ L(M)
and pG(w) > 0, then (25) is infinite, regardless of the choice of pM. We therefore restrict
pG to the domain L(M), and normalize it to obtain:

pG|M(w) =
pG(w)

Z
, if w ∈ L(M) (26)

0, otherwise (27)

where Z =
∑

w:w∈L(M) pG(w). Note that pG|M = pG if L(M) ⊇ L(G). Our goal is now
to show that our choice of pM minimizes:

D(pG|M‖pM) =
∑

w:w∈L(M)

pG|M(w) · log
pG|M(w)

pM(w)

= log
1

Z
+

1

Z

∑

w:w∈L(M)

pG(w) · log
pG(w)

pM(w)
(28)

9
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As Z is independent of pM, it is sufficient to show that our choice of pM minimizes:

∑

w:w∈L(M)

pG(w) · log
pG(w)

pM(w)
(29)

Now consider the expression:
∏

τ

pM(τ)E(τ) (30)

By the usual proof technique with Lagrange multipliers, it is easy to show that our
choice of pM in Section 5.1, given by:

pM(τ) =
E(τ)∑

τ ′,a′,s′:τ ′=(r
a′7→s′)∈T

E(τ ′)
(31)

for each τ = (r
a7→ s) ∈ T , is such that it maximizes (30), under the constraint of proper-

ness.
For τ ∈ T and w ∈ Σ∗ we define #τ (w) to be 0 if w /∈ L(M), and otherwise to be

the number of occurrences of τ in the (unique) computation that recognizesw. Formally,

#τ (w) =
∑

c,c′
�
((q0, w)

cτc′

` (qf , ε)). We rewrite (30) as:
∏

τ

pM(τ)E(τ) =
∏

τ

pM(τ)
∑
w pG(w)·#τ (w)

=
∏

w

∏

τ

pM(τ)pG (w)·#τ (w)

=
∏

w

(∏

τ

pM(τ)#τ (w)

)pG(w)

=
∏

w:pM(w)>0

pM(w)pG (w)

=
∏

w:pM(w)>0

2pG(w)·log pM(w)

=
∏

w:pM(w)>0

2pG(w)·log pM(w)−pG(w)·log pG(w)+pG(w)·log pG(w)

=
∏

w:pM(w)>0

2
−pG(w)·log

pG(w)

pM(w)
+pG(w)·log pG(w)

= 2
−∑w:pM(w)>0 pG(w)·log

pG (w)

pM(w) · 2
∑
w:pM(w)>0 pG(w)·log pG(w) (32)

We have already seen that the choice of pM that maximizes (30) is given by (31), and
(31) implies pM(w) > 0 for all w such that w ∈ L(M) and pG(w) > 0. Since pM(w) > 0
is impossible for w /∈ L(M), the value of:

2
∑
w:pM(w)>0 pG(w)·log pG(w) (33)

is determined solely by pG and by the condition that pM(w) > 0 for all w such that
w ∈ L(M) and pG(w) > 0. This implies that (30) is maximized by choosing pM such
that:

2
−∑w:pM(w)>0 pG(w)·log

pG(w)

pM(w) (34)

10
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is maximized, or alternatively that:

∑

w:pM(w)>0

pG(w) · log
pG(w)

pM(w)
(35)

is minimized, under the constraint that pM(w) > 0 for all w such that w ∈ L(M) and
pG(w) > 0. For this choice of pM, (29) equals (35).

Conversely, if a choice of pM minimizes (29), we may assume that pM(w) > 0 for
all w such that w ∈ L(M) and pG(w) > 0, since otherwise (29) is infinite. Again, for
this choice of pM, (29) equals (35). It follows that the choice of pM that minimizes (29)
concurs with the choice of pM that maximizes (30), which concludes our proof.
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