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Abstract. We investigate the problem of computing the partition function of a prob-
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1. Introduction

Probabilistic context-free grammars (PCFGs) are commonly thought of as
describing probability distributions over strings of terminal symbols and over
derivations of such strings. This has many applications in natural language
processing, such as for the disambiguation of structurally ambiguous sen-
tences and for ranking hypotheses returned by a speech recognizer. See for
example Manning and Schütze (1999) for further discussion.

Probability distributions over strings or derivations by definition imply
that the sum of probabilities of all strings or derivations should be 1. If
the strings or derivations are generated by a grammar, this condition is
often called consistency. Although some frameworks may rely on consis-
tency, for others it is not essential, and relaxing this condition creates new
opportunities for developing probabilistic methods.

Motivated by a number of applications to be discussed later, we con-
sider PCFGs that generate terminal strings with a total probability strictly
smaller than 1, and investigate the problem of the computation of such a
probability. As auxiliary concept, we introduce a function Z on nonterminals
from a given PCFG, called the partition function of the PCFG. The value
Z(A) is the sum of probabilities of all derivations of terminal strings from A.
We are thus mainly interested in the computation of the value Z(S), where
S is the start symbol. As will be shown, the values of the partition function
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2 MARK-JAN NEDERHOF AND GIORGIO SATTA

are intimately related and can be obtained as a specific solution of a system
of polynomial, nonlinear equations. In the literature on statistical parsing,
such a system is usually solved by means of least fixed-point iteration; see
for instance work by Stolcke (1995) and by Abney et al. (1999), and see
Kelley (1995) for a general presentation of least fixed-point iteration.

In this article we also consider two alternative methods to solve the above-
mentioned system of equations. The first is Newton’s method, which has the
advantage that it typically converges in very few iterations. Below we will
motivate one application of partition functions that involves PCFGs of very
large size that are obtained by intersection of another PCFG and a finite
automaton. Large PCFGs lead to very large matrices and costly matrix
operations, making straightforward use of Newton’s method problematic.
We will discuss a way around this problem, resulting in smaller matrices. The
use of Newton’s method for the computation of partition functions has been
originally proposed by Etessami and Yannakakis (2005) (see also Wojtczak
and Etessami (2007)), in the context of recursive Markov chains, a class of
probabilistic generative models that are more expressive than PCFGs. A
related but different use of Newton’s method is as optimisation algorithm.
In the field of NLP this has been frequently applied for the purpose of
maximum entropy parameter estimation (Malouf, 2002).

We further consider Broyden’s method for the computation of partition
functions. Its intermediate results can be seen as approximations of inter-
mediate results that would be computed by Newton’s method. Because of
the approximation, a larger number of steps may be required for the method
to converge. However, Broyden’s method can be implemented without any
matrix operations, and consequently each individual step is less costly than
a comparable step of Newton’s method. Broyden’s method typically offers
better performance than Newton’s method if the dimensions of the matrices
would be very large.

The partition function of a PCFG has a large number of applications
in statistical natural language processing and more in general in syntactic
pattern recognition. For example, let G be a consistent PCFG, representing
a language model, and consider some property Φ of strings that can be
formulated by means of a regular expression or, equivalently, by a finite
automaton M. In order to compute the total probability in our language
model of all strings that have the property Φ, we can construct a new PCFG
GΦ that generates the intersection of the languages generated by G andM,
in such a way that each string generated by GΦ has the same probability
as in G. Note that, in general, GΦ is not a consistent PCFG. The desired
probability can be obtained by computing the value ZΦ(S), where ZΦ is
the partition function associated with GΦ and S is the start symbol of
this grammar. For probabilistic finite automata rather than for PCFGs,
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COMPUTING PARTITION FUNCTIONS OF PCFGS 3

the efficient computation of value ZΦ(S) is mentioned as an important open
problem at section 5, problem 3 of Vidal et al. (2005).

An example of a property Φ of interest in statistical natural language
processing is the set of all strings that have a given infix (or substring or
factor, as it is also called). In this case, ZΦ(S) is called the infix probabil-

ity. Applications are found in island-driven and word spotting techniques for
speech recognition, when only a few words somewhere within a sentence are
recognized and analysis needs to be expanded outward; see Corazza et al.
(1991) and Nederhof and Satta (2003) for further discussion. For prefixes
(and by symmetry also for suffixes) the above problem was investigated
by Persoon and Fu (1975), Jelinek and Lafferty (1991) and Stolcke (1995),
and satisfactory algorithms were found. It was pointed out by Corazza
et al. (1991) that the problem of the computation of infix probabilities is
computationally more difficult than that of the computation of prefix prob-
abilities. The authors developed solutions for the case where a distribution
can be defined on the distance of the infix from the sentence boundaries,
which is a simplifying assumption. The problem is also considered by Fred
(2000), which provides algorithms for the case where the PCFG is a regular
grammar, thus reducing the power to finite-state machinery.

The partition function has other applications as well. For example, Thomp-
son (1974) investigates normalization of a consistent PCFG that is non-
proper; properness means that for each nonterminal, the sum of probabilities
of the rules with that nonterminal as the left-hand side is 1. A slightly more
general problem, involving non-proper and non-consistent PCFGs, was in-
vestigated by Chi (1999); see also Nederhof and Satta (2006). These methods
of normalization heavily rely on the partition function. Normalization can
be the second part of a two-step process of restructuring a PCFG. This
was for example proposed by Abney et al. (1999) for the transformation
into Greibach normal form (see also Huang and Fu (1971)); as first step,
the grammar is transformed such that consistency is preserved, but not
properness.

A related application is the elimination of epsilon rules from a PCFG.
This is needed, for instance, as a step in the transformation of a PCFG into
Chomsky normal form; see Abney et al. (1999). Another relevant application
is the construction of an efficient parser that determines prefix probabilities
for general form PCFGs; see for instance Stolcke (1995). These two ap-
plications require the summation of probabilities of all derivations from a
nonterminal A that generate the empty string. The problem can be cast in
the framework presented above, by considering the PCFG resulting from
the intersection of a source PCFG (with above-mentioned nonterminal A as
start symbol) and a finite automaton generating only the empty string, and
by computing the partition function associated with the resulting PCFG. If
the inside-outside algorithm (Baker, 1979) is performed with a PCFG that
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is not in Chomsky normal form, the inside probabilities can be computed in
the same way as above.

The structure of this paper is as follows. In section 2 we recall standard
notation and terminology, and the partition function of a PCFG is formally
defined in section 3, along with a presentation of a straightforward method
for its computation. The use of Newton’s method for the computation of the
partition function is discussed in section 4, and use of Broyden’s method
is considered in section 5. Section 6 discusses the problem of computing
the partition function of a PCFG resulting from intersection of another
PCFG and a finite automaton. Section 7 investigates the performance of
the discussed methods in practice. We end with some concluding remarks
in section 8.

2. Preliminaries

The main formalism we consider in this work is a probabilistic extension of
context-free grammars (CFGs), as defined for example by Thompson (1974).
A probabilistic CFG (PCFG) is a tuple G = (Σ, N, S, R, p), where Σ and
N are two finite disjoint sets of terminals and nonterminals, respectively,
S ∈ N is the start symbol, and R is a finite set of rules, each of the form
A → α, where A ∈ N and α ∈ (Σ ∪ N)∗, and p is a function from rules in
R to real numbers in the interval [0, 1].

In what follows, symbol a ranges over the set Σ, symbol w ranges over
the set Σ∗, symbols A and B range over the set N , symbols X and Y range
over the set Σ ∪ N , symbols α, β, . . . range over the set (Σ ∪ N)∗, symbol
π ranges over the set R, and symbol d ranges over the set R∗. The empty
string is denoted by ε.

For a fixed PCFG, we define the left-most rewriting relation⇒ on triples
consisting of two strings α, β ∈ (Σ ∪ N)∗ and a rule π ∈ R by: α

π
⇒ β if

and only if α is of the form wAδ and β is of the form wγδ, for some w ∈ Σ∗

and δ ∈ (Σ ∪ N)∗, and π = (A → γ). A left-most derivation is a string

d = π1 · · · πm, m ≥ 0, such that X
π1⇒ · · ·

πm⇒ w, for some grammar symbol X

and terminal string w. We also write X
d
⇒ w for such a left-most derivation

d. In the case of left-most derivation d = ε, this may be expressed as a
d
⇒ a

for any terminal a. We write α ⇒∗ β to denote the existence of a string
π1 · · · πm such that α

π1⇒ · · ·
πm⇒ β.

For a grammar symbol X, a string d = π1 · · · πm, and a terminal string w,

we define p(X
d
⇒ w) to be

∏m
i=1 p(πi) if d is a left-most derivation such that

X
d
⇒ w, and 0 otherwise. The probability p(w) of a string w is defined to be

the sum of all left-most derivations d from the start symbol S, or formally

p(w) =
∑

d p(S
d
⇒ w).
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The length |π| of a rule π = (A→ X1 · · ·Xn) is defined to be n + 1. The
size |G| of a PCFG G is defined to be

∑

π∈R |π|.
The depth depth(d) of a left-most derivation d is the maximal number of

rules visited on a path from the root to a leaf in the familiar representation
as parse tree. More precisely, depth(ǫ) = 0 and if π = (A→ X1 · · ·Xm) and

Xi
di⇒ wi (1 ≤ i ≤ m), then depth(πd1 · · · dm) = 1 + maxi depth(di).

3. Partition function

Given a fixed PCFG, the partition function Z maps each nonterminal A
to the sum of probabilities of left-most derivations of terminal strings from
that nonterminal. Formally:

Z(A) =
∑

d,w

p(A
d
⇒ w). (1)

By decomposing derivations into smaller derivations, and by making use of
the fact that multiplication distributes over addition, we can derive:

Z(A) =
∑

A→α

p(A→ α) · Z(α), (2)

where we define:

Z(ǫ) = 1, (3)

Z(aβ) = Z(β), (4)

Z(Bβ) = Z(B) · Z(β), for β 6= ε. (5)

The partition function may be approximated by only considering derivations
up to a certain depth. We define for all A and k ≥ 0:

Zk(A) =
∑

d,w:depth(d)≤k

p(A
d
⇒ w). (6)

By again decomposing derivations, we obtain a recursive characterization:

Zk+1(A) =
∑

A→α

p(A→ α) · Zk(α), (7)

and Z0(A) = 0 for all A, where we define:

Zk(ǫ) = 1, (8)

Zk(aβ) = Zk(β), (9)

Zk(Bβ) = Zk(B) · Zk(β), for β 6= ε. (10)

Naturally, for all A:

lim
k→∞

Zk(A) = Z(A). (11)
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6 MARK-JAN NEDERHOF AND GIORGIO SATTA

We can interpret equation (2) as a system of polynomial equations over
variables Z(A), for the set of nonterminals A ∈ N . If we choose a fixed
ordering of the nonterminals as A1, . . . , Am, then this system can be written
as:

(Z(A1), . . . , Z(Am)) = F (Z(A1), . . . , Z(Am)) , (12)

where F is the function from m-tuples to m-tuples defined by:

F (Z(A1), . . . , Z(Am)) =




∑

A1→α1

p(A1 → α1) · Z(α1), . . . ,
∑

Am→αm

p(Am → αm) · Z(αm)



 . (13)

The tuple of m values Zk(Ai), 1 ≤ i ≤ m, can be expressed as F k(0, . . . , 0).
Equation (12) may have several solutions. By equations (1) and (11) we

know that the intended solution is limk→∞ F k(0, . . . , 0). As F is monotone
and continuous, we may invoke Kleene’s fixed-point theorem to conclude the
intended solution is the smallest solution of equation (12) that consists of
m non-negative numbers.

As an example, we consider the following PCFG:

S → S S [0.6]
S → a [0.4]

We need to find the smallest solution to:

Z(S) = 0.6 · Z(S) · Z(S) + 0.4 (14)

Whereas this simple example allows the solution Z(S) = 2
3 to be derived

by analytic means, this is not possible in general, and we need to resort to
computing an approximation:

Z0(S) = 0

Z1(S) = 0.6 · Z0(S) · Z0(S) + 0.4 = 0.4

Z2(S) = 0.6 · Z1(S) · Z1(S) + 0.4 ≈ 0.496

Z3(S) = 0.6 · Z2(S) · Z2(S) + 0.4 ≈ 0.548

. . .

Z20(S) = 0.6 · Z19(S) · Z19(S) + 0.4 ≈ 0.665

. . .

The algorithm that approximates the values Z(A) by iteration, comput-
ing the values Zk(A) for k = 1, . . . until they stabilize, will be referred to
as the fixed-point method. This approach has been commonly applied in
natural language processing for the computation of the partition function;
see for instance the work by Thompson (1974), Stolcke (1995) and Abney
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et al. (1999). Formal properties are discussed by Etessami and Yannakakis
(2005) and Kiefer et al. (2007). Fixed-point iteration is well-known in the
numerical calculus literature and is frequently applied to systems of non-
linear equations because it can be easily implemented. When a number of
standard conditions are met, each iteration of the algorithm (corresponding
to the value of k in the above equations) adds a fixed number of bits to
the precision of the approximated solution; see Kelley (1995) for further
discussion.

For performance reasons, fixed-point iteration can be preceded by a parti-
tioning of the set N of nonterminals of a PCFG into maximal sets of mutually
recursive nonterminals. More precisely, two nonterminals A and B are in the
same set of the partition if and only if A ⇒∗ αBβ and B ⇒∗ γAδ, some
α, β, γ and δ. For two distinct sets N ′ and N ′′ of the partition, we define
N ′ ≺ N ′′ if and only if A⇒∗ αBβ, for some A ∈ N ′ and B ∈ N ′′, and some
α and β. The approximations Zk of the partition function are computed in
accordance with this partial order, that is, if N ′ ≺ N ′′, then the computation
of the values Zk(B) is completed for nonterminals B ∈ N ′′ before the same
is done for nonterminals A ∈ N ′. In other words, no computation is wasted
on finding rough approximations for the values associated with N ′ before
reliable approximations for the values associated with N ′′ are available.

Consider a maximal set N ′ of mutually recursive nonterminals and as-
sume that we have already determined a suitable approximation Z̃(B) of
Z(B) for each B in each set N ′′ such that N ′ ≺ N ′′. Let Bβ be a suffix of
the right-hand side of a rule with left-hand side A ∈ N ′, for some B. We
split equation (10) into two cases, depending on whether B belongs to the
current set N ′ or to another set N ′′:

Zk(Bβ) = Z̃(B) · Zk(β), for B /∈ N ′, (15)

Zk(Bβ) = Zk(B) · Zk(β), for B ∈ N ′ and β 6= ε. (16)

We stop iterating when the difference between Zk(A) and Zk−1(A) is below
some threshold for each A ∈ N ′. We then take Zk(A) to be a suitable
approximation of Z(A), which we again denote by Z̃(A).

4. Newton’s method

Newton’s method, also called the Newton-Raphson method, is a root-finding
algorithm that derives from the Taylor series expansion.

4.1. basic definitions

In the case of a function f involving a single variable, the method approx-
imates a solution to f(x) = 0 by the series x(0), x(1), . . . , where x(0) is the
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8 MARK-JAN NEDERHOF AND GIORGIO SATTA

initial estimation, and for k ≥ 0:

x(k+1) = x(k) −
f(x(k))

f ′(x(k))
, (17)

where f ′ denotes the first derivative of f .
In this article, we consider multivariate functions of the form:

F (~x) = (f1(~x), . . . , fm(~x))T , (18)

where ~x denotes a column vector (x1, . . . , xm)T of variables ranging over the
real values. The T stands for transposition, which is used here to turn row
vectors into column vectors.

Newton’s method approximates a solution to fi(~x) = 0 for all i (1 ≤ i ≤
m) by the series ~x(0), ~x(1), . . . , where ~x(0) is the initial estimation, and for
k ≥ 0:

~x(k+1) = ~x(k) − JF (~x(k))−1 · F (~x(k)). (19)

The expression JF (~x) denotes the Jacobian matrix of F , that is:

JF (~x) =









∂f1

∂x1
. . . ∂f1

∂xm

...
. . .

...
∂fm

∂x1
. . . ∂fm

∂xm









. (20)

Further, JF (~x(k)) denotes the real-valued matrix that results by substituting

x
(k)
i for each variable xi (1 ≤ i ≤ m) in JF (~x). The superscript in JF (~x(k))−1

denotes matrix inversion. Practical implementations of matrix inversion have
a cubic time complexity in the number of variables (Cormen et al., 1990), and
therefore this is generally the most expensive operation needed to compute
~x(k+1) from ~x(k).

4.2. standard application

To cast the partition function into a form allowing application of Newton’s
method, we again divide the set of nonterminals of a PCFG into maximal sets
of mutually recursive nonterminals. Consider one such set N ′, and assume
a fixed ordering of the nonterminals in this set as A1, . . . , Am. Assume that
appropriate approximations Z̃(B) have already been computed for each B
in each set N ′′ such that N ′ ≺ N ′′.

The intended values Z(A1), . . . , Z(Am) are now the smallest non-negative
solution to the equations fi(~x) = 0, where fi (1 ≤ i ≤ m) is defined by:

fi(~x) = −xi +
∑

Ai→α

p(Ai → α) · fα(~x), (21)
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where we define:

fǫ(~x) = 1, (22)

faβ(~x) = fβ(~x), (23)

fBβ(~x) = Z̃(B) · fβ(~x), for B /∈ N ′, (24)

fBβ(~x) = xi · fβ(~x), for B = Ai. (25)

The element in row i and column j of JF (~x) is ∂fi

∂xj
(~x). For notational

convenience, we write it as dfi,j(~x). We can make use of the fact that for
any pair of differentiable functions f and g:

∂(f · g)

∂xj

= f ·
∂g

∂xj

+
∂f

∂xj

· g. (26)

In addition:

∂xi

∂xj

= δi,j , (27)

with the Kronecker delta defined as usual by δi,j = 1 if i = j and δi,j = 0
otherwise. From equations (21) to (25) we then obtain:

dfi,j(~x) = −δi,j +
∑

Ai→α

p(Ai → α) · dfα,j(~x), (28)

where we define:

dfǫ,j(~x) = 0, (29)

dfaβ,j(~x) = dfβ,j(~x), (30)

dfBβ,j(~x) = Z̃(B) · dfβ,j(~x), for B /∈ N ′, (31)

dfBβ,j(~x) = xi · dfβ,j(~x) + δi,j · fβ(~x), for B = Ai. (32)

In our experiments with Newton’s method, reported in section 7, we al-
ways take x(0) = (0, . . . , 0)T of length m. It has been recently shown by
Etessami and Yannakakis (2005) and Kiefer et al. (2007) that, with this
initial estimation, Newton’s method converges to the same solution as the
fixed-point method from section 3. This holds for the application under
discussion, which involves systems of polynomial, nonlinear equations with
only positive coefficients. In the general case, allowing negative coefficients,
Newton’s method may not converge, or it may converge to a solution other
than the least fixed-point.

When applying Newton’s method, we partition the set of nonterminals
into maximal sets of mutually recursive nonterminals, as we did in the case
of the fixed-point method. Whereas in the latter case the motivation was
to improve performance, in the case of Newton’s method such a partition
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is essential. More precisely, it has been proved by Etessami and Yannakakis
(2005) that the Jacobian matrix corresponding to a set of nonterminals from
an arbitrary PCFG cannot be inverted in general, unless that set consists of
mutually recursive nonterminals.

For the application under discussion, Etessami and Yannakakis (2005)
have shown that the convergence of Newton’s method is asymptotically at
least as fast as that of the fixed-point method, and exponentially faster in
many cases. One such case is if the PCFG is critical. Informally, a proper
PCFG is critical if it lies at the boundary between consistency and inconsis-
tency; see Chi (1999) for a more precise definition. For critical PCFGs, the
number of iterations needed by the fixed-point method to compute the first
c bits of the solution may grow exponentially in c. We will see an example
of this degenerate behaviour in section 7. In contrast, it has been shown
by Kiefer et al. (2007) that for Newton’s method, the number of iterations
grows linearly in c. As the running time of one iteration is polynomial in the
number of bits of the required floating point representation, it follows that
the total running time is polynomial in c as well.

Whereas Newton’s method has a favourable time complexity for a fixed
grammar and a variable precision, the asymptotic complexity in terms of the
grammar size is more problematic. For a family of grammars presented by
Kiefer et al. (2007), the number of iterations needed to compute the first c
bits of the desired solution, for some constant c, is exponential in the number
of maximal sets of mutually recursive nonterminals. This also holds for the
fixed-point method and all related methods however.

4.3. linking nonterminals

A major problem with the standard application of Newton’s method for the
computation of the partition function as discussed above is that maximal
sets of mutually recursive nonterminals can be quite large. One important
application where this arises will be discussed in section 6. Large sets of
mutually recursive nonterminals give rise to large matrices that are to be
inverted, and matrix inversion is generally the most costly operation in an
iteration of Newton’s method.

In this section, we investigate how this problem can be alleviated by pre-
venting many nonterminals from acting as variables in the required operation
of matrix inversion. More precisely, we choose a subset Nl for each maximal
set N ′ of mutually recursive nonterminals, with the following property. There
is a bound b such that if A0 → α1A1β1, A1 → α2A2β2, . . . , An−1 → αnAnβn

and A1, . . . , An ∈ Nl, then n ≤ b. In words, if we descend downwards
in a derivation passing through nonterminals in Nl, we must encounter a
nonterminal not in Nl within a predetermined number of steps. Although
all nonterminals in N ′ are recursive (provided N ′ contains at least two ele-
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COMPUTING PARTITION FUNCTIONS OF PCFGS 11

ments), the recursive structure can be captured in terms of nonterminals in
N ′−Nl, which are linked by nonterminals in Nl. We therefore refer to a set Nl

as a set of linking nonterminals. In terms of the partition function, we may
say that the value assigned to a non-linking nonterminal can be expressed
as a combination of values assigned to other non-linking nonterminals, and
the values assigned to linking nonterminals merely represent intermediate
results.

For each set N ′ there may be several valid choices of Nl. A general method
to obtain a suitable set of linking nonterminals consists of the following. We
map the grammar to a graph whose vertices are the nonterminals. There is
an edge from A to B if and only if there is a rule of the form A→ αBβ. We
then do a depth-first search of the entire grammar starting from S, follow-
ing Cormen et al. (1990). Upon leaving a recursive call, the corresponding
nonterminal is assigned a unique number. As such numbers are assigned in
increasing order, this number for a nonterminal A is called its finishing time

and denoted here as finish(A).
We then choose a nonterminal B to be linking in the relevant maximal

set of mutually recursive nonterminals if there is no rule of the form A →
αBβ with finish(A) ≤ finish(B). It is clear that if A0 → α1A1β1, . . . ,
An−1 → αnAnβn and A1, . . . , An are linking by the above construction,
then finish(A0) > finish(A1) > · · · > finish(An), and therefore n is bounded
by the number of nonterminals.

The dimension m of a square matrix JF (~x(k)) that we construct for each
N ′ at each iteration of Newton’s method is now |N ′ −Nl|, where N ′ is a
maximal set of mutually recursive nonterminals, and Nl is the subset thereof
of linking nonterminals. Let us assume a fixed ordering of the non-linking
nonterminals as A1, . . . , Am. This warrants specialization of equation (25)
into two cases:

fBβ(~x) = xi · fβ(~x), for B = Ai, (33)

fBβ(~x) = fB(~x) · fβ(~x), for B ∈ Nl, (34)

where we define for B ∈ Nl:

fB(~x) =
∑

B→α

p(B → α) · fα(~x). (35)

Accordingly, we replace equation (32) by two equations:

dfBβ,j(~x) = xi · dfβ,j(~x) + δi,j · fβ(~x), for B = Ai, (36)

dfBβ,j(~x) = fB(~x) · dfβ,j(~x) + dfB,j(~x) · fβ(~x), for B ∈ Nl, (37)

where we define for B ∈ Nl:

dfB,j(~x) =
∑

B→α

p(B → α) · dfα,j(~x). (38)
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12 MARK-JAN NEDERHOF AND GIORGIO SATTA

An example of the use of these equations will be given in section 6.4.
For the computation of one real-valued matrix JF (~x(k)), some of the aux-

iliary values may be used more than once. For example, one value dfB,j(~x
(k)),

as defined in equation (38), may be needed for the computation of the right-
hand side of equation (37) for several distinct choices of Bβ in the left-hand
side. By tabulating values such as dfB,j(~x

(k)), the computation of matrix

JF (~x(k)) can be performed in quadratic time in the size of the PCFG.
This can be easily verified by counting the number of distinct instantiations
of each of the mentioned equations, in terms of the number of suffixes of
right-hand sides of rules and the number of nonterminals in the grammar.

In the experiments reported below, where we look at running time, we
always assume tabulation of auxiliary values. This also holds for the standard
application of Newton’s method without linking nonterminals.

One more optimization is based on the following observation. A value
dfβ,j(~x) is predictably zero if fβ(~x) does not depend, directly or indirectly
via linking nonterminals, on the value of the non-linking nonterminal xj . We
perform a static analysis at the beginning of the computation to determine
such dependencies, so that some unnecessary work may be avoided.

4.4. further optimisations in the experiments

There is a way to avoid matrix inversion for computing the value in (19).
First we solve the linear system:

JF (~x(k)) · ~y(k) = −F (~x(k)), (39)

for a vector ~y(k) of variables, using LU decomposition (Luenberger, 1973).
We then compute:

~x(k+1) = ~x(k) + ~y(k). (40)

This reduces the time costs for large and sparse matrices, but there is
little benefit for small and dense matrices. Therefore, for matrices smaller
than dimension 2000, we have applied instead the classical modified Newton
method (Luenberger, 1973). This means that the inverted Jacobian matrix is
reused in K iterations. More concretely, in equation (19) we reuse JF (~x(k))−1

instead of JF (~x(k+1))−1, . . . , JF (~x(k+K))−1, for each k that is a multiple of
K + 1. In our experiments, we found that K = 5 was a good choice.

The implemented termination condition, both for Newton’s method and
for the fixed-point iteration method, is if two successive iterations provide
the same values for ~x. Non-termination due to oscillating values, caused by
round-off errors, is avoided by never allowing a decrease of the values. It
should be noted here that all vectors ~x(k) computed by Newton’s method
are smaller than or equal to the desired solution, barring round-off errors.
This is due to properties of the considered systems of equations, which make
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COMPUTING PARTITION FUNCTIONS OF PCFGS 13

that each iteration of Newton’s method represents a monotone operation,
as proven by Kiefer et al. (2007).

5. Broyden’s method

The computation of the Jacobian matrix JF (~x(k)) in equation (19) as well
as its inversion and multiplication with F (~x(k)) can be expensive operations,
especially if the number of variables is large. Broyden’s method, which is also
called a quasi-Newton method, avoids any use of matrices, by approximating
−JF (~x(k))−1 · F (~x(k)) by a vector ~s(k). In our implementation following
Kelley (1995), this vector is computed on the basis of F (~x(k)) and ~s(k′)

with k′ < k. Broyden’s method can be seen as a generalization to multiple
dimensions of the secant method, which replaces the first derivative of a
function with a finite difference approximation.

As initial value ~s(0), we take −M · F (~x(0)), where M is a fixed matrix
of the appropriate dimension that approximates JF (~x(0))−1. It is practical
to take either M = I or M = −I, where I is the identity matrix. For the
functions F that we consider here, the diagonal of JF (~x(0)) contains only
negative values and therefore M = −I is a reasonable choice. Consequently,
we can obtain ~s(0) = F (~x(0)) without matrix operations.

The computation of ~s(k+1) for k ≥ 0 can also be implemented without
any matrix operations, at the expense of having a loop in each iteration k,
which computes:
1. ~x(k+1) ← ~x(k) + ~s(k);
2. ~z ← F (~x(k+1));
3. for j = 0, . . . , k − 1 do:

~z ← ~z + ~s(j+1) ·
~s(j) · ~z

~s(j) · ~s(j)
;

4. ~s(k+1) ← ~z/(1 −
~s(k) · ~z

~s(k) · ~s(k)
).

(We let · with two vectors as arguments stand for the inner product.)
As each iteration is more expensive than the previous one due to the

loop, it is common to ’restart’ every K iterations, that is, to repeat the
above procedure after setting k ← 0 and ~x(0) ← ~x(K). The number K is
fixed, and we have found K = 20 to be a good choice.

Values in ~s(k) tend to contain both negative and positive values, letting
the respective ~x(k) move back and forth close to the root for many iterations.
It is therefore more difficult to avoid oscillation and non-termination than in
the case of the fixed-point method and Newton’s method. The implemented

termination conditions are:
∣

∣

∣~s
(k)
i /~x

(k+1)
i

∣

∣

∣ < 10−10 for all i or the computation

of ~s(k) · ~s(k) causes underflow.
Much as in the previous section, use of linking nonterminals can be sep-

arated from the mathematical treatment of the root-finding problem. This
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14 MARK-JAN NEDERHOF AND GIORGIO SATTA

means that the length of vectors manipulated by Broyden’s method is deter-
mined by the number of non-linking nonterminals. The linking nonterminals
only appear internally in the evaluation of F .

6. Application to intersection

In this section we consider the computation of the partition function for a
PCFG obtained from the intersection of another PCFG and a finite automa-
ton.

6.1. finite automata

To simplify the definitions in the next section, we consider only finite au-
tomata without epsilon transitions. Thus, a finite automaton (FA) is
represented as a tuple M = (Σ, Q, qI , E, T ), where Σ and Q are two
finite sets of terminals and states, respectively, qI ∈ Q is the initial state,
E ⊆ Q is the set of final states, and T is a finite set of transitions, each of
the form s

a
7→ t, where s, t ∈ Q and a ∈ Σ.

In what follows, symbols s and t range over the set Q, symbol τ ranges
over the set T , and symbol c ranges over the set T ∗.

For a fixed FAM, we define a configuration to be an element of Q×Σ∗.
We also define the relation ⊢ on triples consisting of two configurations and

a transition τ ∈ T by: (s,w)
τ

⊢ (t, w′) if and only if w is of the form aw′, for

some a ∈ Σ, and τ = (s
a
7→ t). We say M recognizes string w if (qI , w)

τ1
⊢

(s1, w1)
τ2
⊢ · · ·

τm

⊢ (sm, wm), some si, wi and τi (1 ≤ i ≤ m), where sm ∈ E
and wm = ε. We then call the string c = τ1 · · · τm a computation for w.
The automaton recognizes string ε if qI ∈ E by taking computation c = ε.
The language L(M) accepted byM is the set of all recognized strings. We
say a FA is non-ambiguous if there is at most one computation c for each
string. We say a FA is deterministic if there is at most one transition s

a
7→ t

for each s and a. Determinism is a sufficient condition for non-ambiguity.
The size |M| of a FA M is defined to be |T | + |E|. We assume that a

finite automaton does not contain useless states, which implies that |M| ≥
|Q|.

6.2. intersection of pcfg and fa

It was shown by Bar-Hillel et al. (1964) that context-free languages are closed
under intersection with regular languages. Their proof relied on the construc-
tion of a new CFG out of an input CFG and an input finite automaton. We
extend this by letting the input grammar be a probabilistic CFG (although
the finite automaton is still discrete). We will refer to this construction as
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COMPUTING PARTITION FUNCTIONS OF PCFGS 15

weighted intersection, as it is applicable to a pair consisting of a weighted
CFG and a weighted FA; we will not discuss the construction in its fullest
generality, however, since only the probabilistic case is needed here.

For a PCFG G = (Σ, N, S, R, p) and a FAM = (Σ, Q, qI , E, T ) with
the same set of terminals, we construct a new PCFG G∩ = (Σ, N∩, S∩, R∩,
p∩), where N∩ = {S∩} ∪ Q× (Σ ∪N)×Q, with S∩ a new symbol, and R∩

is the set of rules that is obtained as follows.

− For each A → X1 · · ·Xn in R and each sequence s0, . . . , sn ∈ Q, with
n ≥ 0, let (s0, A, sn)→ (s0,X1, s1) · · · (sn−1,Xn, sn) be in R∩; if n = 0,
the new rule is of the form (s0, A, s0) → ǫ. Function p∩ assigns to the
new rule the same probability assigned by p to the original rule.

− For each s
a
7→ t in T , let (s, a, t) → a be in R∩. Function p∩ assigns

probability 1 to this rule.

− For each final state s ∈ E, let S∩ → (qI , S, s) be in R∩. Function p∩
assigns probability 1 to this rule.

In the general case, grammar G∩ contains useless rules and nonterminals.
These can be removed in linear time by a process called reduction (Hopcroft
and Ullman, 1979). We assume that the intersection grammar G∩ is reduced
before it is subjected to further operations, in particular, the computation
of the partition function.

PCFGs considered in practice are often proper, which means that for
each nonterminal A, the sum of probabilities of all rules with A as left-hand
side is 1. Note that even if G is proper, G∩ in general is not, and this sum
may be smaller than 1 or greater than 1.

If M is non-ambiguous, then p∩(w) = p(w) if w is recognized by M
and p∩(w) = 0 otherwise. This and other formal properties of weighted
intersection are investigated by Nederhof and Satta (2003).

The first clause above can at worst contribute the quantity |G| · |M|r

to the size of the intersection grammar G∩, where r is the length of the
longest rule in R. As r may be very large in practical cases, the intersection
grammar may grow very large. This is certainly the case for a common
PCFG reported in section 7. It is therefore useful if not essential to turn
the source grammar G into binary form before the intersection, that is, to
transform the grammar to let r = 3, preserving the probabilities of strings,
and allowing a straightforward mapping from derivations in the transformed
grammar to derivations in the original grammar. If G is so transformed before
intersection withM, the size of the intersection grammar becomes linear in
|G| and cubic in |M|, where G is the binarized grammar.

Note that we do not need to transform to Chomsky normal form (Harri-
son, 1978; Huang and Fu, 1971), and a simpler procedure suffices. Here we
will apply a transformation that replaces each rule A→ α such that |α| > 2
with the |α| − 1 rules below, involving new nonterminals of the form [β],
where β is a proper suffix of α of length 2 or more.
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16 MARK-JAN NEDERHOF AND GIORGIO SATTA

− A→ X [β] with the same probability as A→ α, where Xβ = α,

− [Xβ]→ X [β] with probability 1, where Xβ is a suffix of α of length 3
or more, and

− [XY ]→ X Y with probability 1, where XY is the suffix of α of length
2.

If the right-hand sides of two distinct rules A1 → α1 and A2 → α2 share a
proper suffix β, there is a single new rule with left-hand side [β].

6.3. determining linking nonterminals

Let us assume from this point onwards that the PCFG at hand was ob-
tained by binarization, followed by intersection with a finite automaton.
Two observations are relevant. First, the set of nonterminals introduced by
binarization, following the procedure above, is a valid set of linking nonter-
minals. In particular, the bound b mentioned in section 4.3 is determined
by the maximum length of a right-hand side of a rule in the grammar
before binarization. To see this, consider a sequence of newly introduced
nonterminals [α], for suffixes α of a right-hand side of a rule, where |α| is
decreasing.

Second, if we compute a new PCFG from a binarized PCFG and a finite
automaton using intersection, then the obtained set of nonterminals of the
form (s, [α], t) also constitutes a valid set of linking nonterminals, with the
same bound b. This follows from the way in which parts of the structure of
the intersection grammar are copied from the source grammar.

Experiments have revealed that sets of linking nonterminals determined
in this way are almost identical to those obtained by the general algorithm
from section 4.3. In the experiments in section 7, linking nonterminals were
determined as side-effect of the binarization process as described above.

6.4. example

We consider the following PCFG:

S → S A S [0.2]
S → a [0.8]

A → A A [0.4]
A → a [0.5]
A → b [0.1]
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s0
s1

a

b

Figure 1. Finite automaton in the example.

S∩ → (s0, S, s1) [1] S∩ → B1 [1]

(s0, S, s1) → (s0, S, s1) (s1, [AS], s1) [0.2] B1 → B1 C [0.2]
(s0, S, s1) → (s0, a, s1) [0.8] B1 → A′ [0.8]

(s1, [AS], s1) → (s1, A, s0) (s0, S, s1) [1] C → A1 B1 [1]

(s1, A, s0) → (s1, A, s0) (s0, A, s0) [0.4] A1 → A1 A4 [0.4]
(s1, A, s0) → (s1, A, s1) (s1, A, s0) [0.4] A1 → A2 A1 [0.4]
(s1, A, s0) → (s1, b, s0) [0.1] A1 → B′ [0.1]
(s1, A, s1) → (s1, A, s0) (s0, A, s1) [0.4] A2 → A1 A3 [0.4]
(s1, A, s1) → (s1, A, s1) (s1, A, s1) [0.4] A2 → A2 A2 [0.4]

(s0, A, s1) → (s0, A, s0) (s0, A, s1) [0.4] A3 → A4 A3 [0.4]
(s0, A, s1) → (s0, A, s1) (s1, A, s1) [0.4] A3 → A3 A2 [0.4]
(s0, A, s1) → (s0, a, s1) [0.5] A3 → A′ [0.5]

(s0, A, s0) → (s0, A, s0) (s0, A, s0) [0.4] A4 → A4 A4 [0.4]
(s0, A, s0) → (s0, A, s1) (s1, A, s0) [0.4] A4 → A3 A1 [0.4]

(s0, a, s1) → a [1] A′ → a [1]

(s1, b, s0) → b [1] B′ → b [1]

Figure 2. Intersection grammar in the example, with original nonterminal names on
the left. The same rules with nonterminal names consistently renamed, for ease of
reference, are given on the right.

Binarization results in:

S → S [AS] [0.2]
S → a [0.8]

[AS] → A S [1]

A → A A [0.4]
A → a [0.5]
A → b [0.1]

We take [AS] to be the only linking nonterminal.
The intersection of the binarized grammar and the FA from Figure 1

is given in Figure 2, after reduction. There are two sets of mutually re-
cursive nonterminals, viz. {(s1, A, s0), (s1, A, s1), (s0, A, s1), (s0, A, s0)} and
{(s0, S, s1), (s1, [AS], s1)}.

The former of these two sets is treated first. Let us order the four non-
terminals as A1 = (s1, A, s0), A2 = (s1, A, s1), A3 = (s0, A, s1), A4 =
(s0, A, s0). The objective is to find the smallest non-negative solution to
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18 MARK-JAN NEDERHOF AND GIORGIO SATTA

the system:

0 = f1(x1, x2, x3, x4) = −x1 + 0.4 · x1 · x4 + 0.4 · x2 · x1 + 0.1

0 = f2(x1, x2, x3, x4) = −x2 + 0.4 · x1 · x3 + 0.4 · x2 · x2

0 = f3(x1, x2, x3, x4) = −x3 + 0.4 · x4 · x3 + 0.4 · x3 · x2 + 0.5

0 = f4(x1, x2, x3, x4) = −x4 + 0.4 · x4 · x4 + 0.4 · x3 · x1

As no linking nonterminals are involved here, we only need to look at the
equations from Section 4.2, to derive for example:

df1,1(~x) = −δ1,1 + p(A1 → A1A4) · dfA1A4,1(~x) +
p(A1 → A2A1) · dfA2A1,1(~x) +
p(A1 → B′) · dfB′,1(~x)

(41)

= −1 + 0.4 · (x1 · dfA4,1 + δ1,1 · x4) +
0.4 · (x2 · dfA1,1 + δ2,1 · x1) +
0.1 · 0

(42)

= −1 + 0.4 · (x1 · 0 + 1 · x4) + 0.4 · (x2 · 1 + 0 · x1) (43)

= −1 + 0.4 · x4 + 0.4 · x2 (44)

df1,2(~x) = −δ1,2 + 0.4 · (x1 · dfA4,2 + δ1,2 · x4) +
0.4 · (x2 · dfA1,2 + δ2,2 · x1)

(45)

= 0.4 · (x1 · 0 + 0 · x4) + 0.4 · (x2 · 0 + 1 · x1) = 0.4 · x1 (46)

Together with the remaining of the 16 expressions dfi,j(~x), 1 ≤ i, j ≤ 4, we
obtain:

JF (x1, x2, x3, x4) =




−1 + 0.4 · x4 + 0.4 · x2 0.4 · x1 0 0.4 · x1

0.4 · x3 −1 + 0.8 · x2 0.4 · x1 0
0 0.4 · x3 −1 + 0.4 · x4 + 0.4 · x2 0.4 · x3

0.4 · x3 0 0.4 · x1 −1 + 0.8 · x4



 (47)

Application of Newton’s method results in the values Z̃(A1), Z̃(A2), Z̃(A3),
Z̃(A4).

We now turn to the set {(s0, S, s1), (s1, [AS], s1)}. If we let C = (s1, [AS], s1)
act as linking nonterminal, then the manipulated matrices have dimension
1, where the sole entry corresponds to nonterminal B1 = (s0, S, s1).

Involving the equations from Section 4.3, we now obtain:

df1,1(~x) = −δ1,1 + 0.2 · (x1 · dfC,1(~x) + δ1,1 · fC(~x)) (48)

= −1 + 0.2 · (x1 · dfC,1(~x) + fC(~x)), (49)

where

dfC,1(~x) = p(C → A1B1) · dfA1B1,1(~x) (50)

= 1 · Z̃(A1) · dfB1,1(~x) = Z̃(A1) (51)

fC(~x) = p(C → A1B1) · Z̃(A1) · x1 = Z̃(A1) · x1 (52)
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Note that it is an essential element of our approach that the right-hand
sides of equations (51) and (52) are not substituted in the right-hand side
of equation (49), which in the general case avoids combinatorial explosions
for long right-hand sides in the original grammar.

Application of Newton’s method provides the value Z̃(B1), after which
the main value of interest Z̃(S∩) = p(S∩ → B1)·Z̃(B1) = Z̃(B1) is computed.

7. Experimental results

We first investigate three artificial examples, to illustrate some difficulties
underlying the fixed-point method, and we then look at performance for
grammars used in practice. We have implemented the algorithms in C++,
on a PC with a 3.4 GHz Pentium D processor.

The experiments were performed with floating-point numbers of type
‘double’ (8 bytes on our machine).

7.1. artificial grammars

Consider the family of PCFGs given by the following rules with indicated
probabilities:

S → S S [12 −
1
2i ]

S → a [12 + 1
2i ],

(53)

with i from 2 to 27. The value Z(S) is 1 for each choice of i, but Zk(S) quickly
decreases for increasing i, and thereby the fixed-point method becomes very
slow, as illustrated by figure 3. For i = 27, 45 seconds are required, for more
than 1.47 · 108 iterations.

This contrasts with Newton’s method, which for i = 27 requires 2.7 ·10−5

seconds, or 28 iterations. Broyden’s method requires 1.0 · 10−4 seconds, or
41 iterations. Upon halting, the distance of the computed value to the true
fixed-point Z(S) = 1 is slightly smaller for Newton’s method than for the
fixed-point method, for all i. For i = 27 this is 1.2 · 10−9 (Newton’s method)
versus 4.8 ·10−9 (fixed-point method); Broyden’s method is less precise than
either, with distance 5.9 · 10−9.
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Figure 3. Running time of the fixed-point method for the family of grammars in
(53).

The fixed-point method is also sensitive to a combination of cycles in the
grammar, which is illustrated by the following family of (linear) PCFGs:⋆

A1 → A2 [12 ]
A1 → A1 [12 ]
A2 → A3 [12 ]
A2 → A1 [12 ]

...
Ai−1 → Ai [12 ]
Ai−1 → A1 [12 ]
Ai → ε [1],

(54)

with i from 1 to 19. The start symbol is A1.
Figure 4 shows that for increasing values of i, there is a steep increase of

the running time of the fixed-point method. In fact, analytical arguments
indicate that the number of iterations required to reach a given accuracy
grows exponentially in i. For i = 19, the fixed-point method requires 1.2 ·107

iterations, or 105 seconds, whereas Newton’s method throughout requires 2
iterations, or 1.0 · 10−4 seconds for i = 19. In fact, a single iteration would
be sufficient, as Newton’s method here effectively solves a linear system of
equations during the first iteration, which already yields the required values.
A second iteration is performed in our implementation before it is detected
that the computed values are stable. Newton’s method throughout computes
the exact value Z(A1) = 1 for all bits in the binary representation, whereas

⋆ This example is due to Kousha Etessami and Mihalis Yannakakis (personal commu-
nication), with whose kind permission it is presented here.
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Figure 4. Running time of the fixed-point method for the family of grammars in
(54).

for the fixed-point method, the difference is as great as 1.9 ·10−11 for i = 19.
Broyden’s method throughout requires i+ 1 iterations, or 4.6 · 10−4 seconds
for i = 19, and computes the exact value.

A similar phenomenon can also be achieved with a fixed underlying CFG
and probabilities of increasing bit-size, as in the following family of PCFGs:

A1 → A2 [ 1
2i ]

A1 → A1 [1− 1
2i ]

A2 → ε [1],
(55)

with i increasing from 1. Again, the fixed-point method showed exponential
behaviour in the experiments (figure omitted), whereas Newton’s method
requires 2 iterations throughout, and Broyden’s method 3 iterations. Once
more, the exponential behaviour is easily explained by analytical arguments.

7.2. wsj corpus

Experiments were performed on the Wall Street Journal (WSJ) corpus, from
the Penn Treebank version II. During its development, the software was
tested on the basis of section 22, and the measurements presented here
involve sections 02-21. First a context-free grammar was derived from the
‘stubs’ of the combined trees, taking parts of speech as leaves of the trees,
omitting all affixes from the nonterminal names. Such preprocessing of the
WSJ corpus is consistent with earlier work that used CFGs derived from
the same corpus, as e.g. by Johnson (1998).

For the first experiment, we have preserved ε-generating subtrees, which
leads to a CFG with 10,266 rules, 28 nonterminals and 36 terminals. The
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probabilities of the PCFG were obtained by relative frequency estimation,
without smoothing. As proven by (Chi and Geman, 1998), the partition
function of a PCFG obtained in this way assigns 1 to all nonterminals.

We binarized the CFG, leading to 15,052 rules and 4,814 nonterminals.
We then computed the sum of probabilities of ε-generating derivations for
each nonterminal of the original grammar. As explained in the introduction,
this is done by letting a given nonterminal be the start symbol, and taking
the intersection with an automaton recognizing only the empty string. The
partition function applied to the start symbol of the intersection grammar
is the required value. For only 5 of the 28 nonterminals, the empty string
cannot be generated, and thereby the determined value is 0. The highest
value, namely 0.218, is obtained for nonterminal WHADVP.

The fixed-point method takes 0.30 seconds for all nonterminals together,
whereas Newton’s method takes 0.11 seconds and Broyden’s method takes
0.08 seconds, not including the time costs of intersection, which is of course
identical for the three methods. The application of Newton’s method and
Broyden’s method was combined with the concept of linking nonterminals,
as explained in section 4. The highest number of iterations per maximal
set of mutually recursive nonterminals is 20 for the fixed-point method, 6
for Newton’s method, and 8 for Broyden’s method. The values produced
by the three methods agree in the first 13 digits of the significand for all
nonterminals.

Although the difference in performance between the three methods is
small, we feel the above results are noteworthy because they are one argu-
ment in support of our thesis that the computation of sums of derivations
is a problem of practical relevance that can be effectively solved in many
interesting cases.

For the following experiments, in which we estimate infix probabilities, we
constructed a PCFG as above, with the exception that ε-generating subtrees
were removed from the corpus before construction of the PCFG. This leads
to 10,035 rules and 28 nonterminals before binarization and 14,676 rules and
4,669 nonterminals after binarization. We have taken 50 strings of length 6,
which were generated randomly, giving each of the 36 terminals an equal
probability. To give an impression of the order of magnitude of the infix
probabilities, the first 5 strings are given in table I, together with their infix
probabilities.

In order to investigate the impact of the length of infixes on the running
time of the method, we have also considered the prefixes of length 2 to 6 of
the 50 random strings.

The running times are presented in figure 5. Newton’s method and Broy-
den’s method improve on the fixed-point method most convincingly for small
problem sizes. For infixes of length 2, the fixed-point method requires on the
average 6.57 seconds, whereas Broyden’s method requires 0.52 seconds, an
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Table I. The first 5 of the 50 random strings used in
the experiment, together with their estimated infix
probabilities.

random string infix probability

FW NNPS JJS JJS SYM NNS 2.11 · 10−19

CC MD JJ WP VBZ VB 5.01 · 10−11

WP PDT IN RBR DT VBP 2.59 · 10−15

IN NNPS POS NN WP$ NNS 1.89 · 10−10

WP RB WP VB JJ WP$ 1.93 · 10−12
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Figure 5. Running time of the methods, against the length i of infixes.

improvement by a factor of more than 12. For infixes of length 6, this factor
is still more than 6. On the average, the probabilities computed by the three
methods agree in more than 9 decimal digits, for all infix lengths.

In our last experiment, we have compared Newton’s method and Broy-
den’s method with the technique involving linking nonterminals to the same
methods without that technique. As we found unsurmountable difficulties
with large problem sizes, we have looked only at infixes of length 3, with
different grammar sizes. The grammar size was varied by forming the PCFG
on the basis of sections 02 to i of the WSJ corpus, where i ranges from 05
to 12. The running time is given in table II. We also give the running time
of the fixed-point method as the base line. Again, no significant differences
in accuracy were observed between the respective methods.

The data show that there is more than one order of magnitude between
the performance of Newton’s method with and without the technique involv-
ing linking nonterminals. In fact, without this technique, Newton’s method
performs far worse than the fixed-point method. In order to demonstrate
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Table II. The number of rules in the grammar before binarization,
and the running time of the fixed-point method, and of Newton’s
method and Broyden’s method with and without distinguishing
linking nonterminals, for different subsets of the WSJ corpus.

WSJ fixed-point Newton (sec.) Broyden (sec.)

sections |R| (sec.) link no link link no link

02-05 4277 6.2 0.6 12.1 0.5 0.8

02-06 4765 6.8 0.6 16.4 0.5 0.9

02-07 5326 7.7 0.7 17.9 0.6 1.1

02-08 5437 7.9 0.7 22.8 0.6 1.1

02-09 5904 8.8 0.8 31.2 0.7 1.2

02-10 6289 9.9 1.0 48.0 0.8 1.5

02-11 6738 10.6 1.0 38.6 0.9 1.7

02-12 7116 11.5 1.1 41.0 1.0 2.5

in which way the high costs of matrix operations are responsible for this,
we look closer at one substring, which we arbitrarily take to be “FW NNPS
JJS”, a prefix of the first substring from table I, in combination with sections
02-05 of the WSJ corpus. The largest maximal set of mutually recursive
nonterminals contains 5741 nonterminals. Without distinguishing linking
nonterminals, the relevant matrix has dimension 5741. As discussed in Sec-
tion 4.4, one step of Newton’s method can be done by matrix inversion or
by solving a sparse system of equations. In both cases, the time costs are a
little over 1 seconds here.

By distinguishing between 186 non-linking and 5555 linking nonterminals,
matrix inversion now takes about 0.02 seconds, and construction of the
matrix before inversion becomes the greatest cost factor and takes about
0.06 seconds. The number of iterations per set of nonterminals is comparable
for Newton’s method with or without distinguishing linking nonterminals.

As Broyden’s method does not manipulate matrices, there is a much
smaller difference between the performance with or without the technique
involving linking nonterminals. The technique still has a clear beneficial
influence on the performance however, with a speed-up exceeding a factor
of 2.5 for the largest problem size considered here.

Experiments with Newton’s method applied on NLP grammars have been
reported before, by Wojtczak and Etessami (2007). However, they consid-
ered grammars directly extracted from treebanks, as opposed to grammars
resulting from intersection with FAs. Consequently, the problem sizes they
obtained were of a considerably smaller magnitude.
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8. Conclusions

We have discussed applications of partition functions of PCFGs, and have
considered the fixed-point method, Newton’s method, and Broyden’s method
for their computation. We have argued theoretically that the fixed-point
method suffers from a number of problems with time complexity, and we
have shown using practical experiments that it can be considerably slower
than Newton’s method and Broyden’s method.

However, it should also be observed that for large problem sizes, the
advantages of Newton’s method over the fixed-point method may become
weaker, due to the high costs of matrix inversion. This problem may be
avoided by Broyden’s method, which does not manipulate matrices. Al-
though it typically requires more iterations than Newton’s method, each
iteration commonly has lower time costs.

Our version of Newton’s method distinguishes between two types of
variables, a first set that captures the recursive structure in a system of
equations, and a second set of variables that mediate between variables
in the first set without contributing to recursion on their own. As far as
we know, this is a novel variant of Newton’s method, which is particularly
effective for probabilistic context-free grammars, as we have shown.
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