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A previous article presented a technique to compute the least-cost error repair by incrementally
generating configurations that result from inserting and deleting tokens in a syntactically incorrect
input. An additional mechanism to improve the run-time efficiency of this algorithm by pruning
some of the configurations was discussed as well. In this communication we show that the pruning
mechanism may lead to suboptimal repairs or may block all repairs. Certain grammatical errors
in a common construct of the Java programming language also lead to the above kind of failure.
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1. INTRODUCTION

Error repair techniques have always been essential components of compiler systems.
There is a wealth of literature on various approaches to constructing repair modules
automatically from the grammar of a given programming language. The technique
presented in the article by McKenzie et al. [1995] (ACM TOPLAS 17, 4) stands
out as an elegant and efficient, generic method which has been claimed to produce
locally least-cost repairs for incorrect strings with respect to arbitrary LR gram-
mars. To speed up the search for possible repair configurations, a technically simple
pruning mechanism was also introduced in McKenzie et al. [1995]. The purpose of
the present communication is to give evidence that such pruning is unsafe, both in
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procedure ClearQueue:
“initialize queue to be empty”

procedure Enqueue(< stack, input >, inserted, deleted, cost, ptr, height):
“insert new configuration into queue”

function DeleteMin():
“get least-cost configuration and remove it from queue”

function CreateGlobal(value):
“create global variable with initial value and return pointer to this variable”

function f(ptr) :
“return the variable pointed to by ptr”

Fig. 1. Auxiliary routines.

terms of the cost of repairs obtained and in terms of finding any repair at all.

‘We begin our discussion by restating the algorithms presented in McKenzie et al.
[1995]. Then several example grammars and specific cases of error repair applicable
to erroneous strings with respect to those grammars are described in detail. It will
become apparent that the pruning technique presented in McKenzie et al. [1995]
fails in those cases.

2. THE REPAIR ALGORITHM

In this section we present the algorithm from McKenzie et al. [1995]. The original
description was given in two phases. First, an informal algorithm was presented
which computes the locally cheapest repair of a given error configuration. It does so
by generating new configurations that can be reached from the error configuration
by means of inserts and deletes. Configurations are maintained in a priority queue
ordered by the sum of the costs of the applied inserts and deletes, in such a way
that cheapest repairs are considered first.

The second phase is a refinement of this algorithm which restricts the number of
configurations that are inserted in the priority queue. Quite roughly, this restriction
means that a configuration is ignored if some earlier configuration had the same
state on top of the stack. The motivation is that this newer configuration would
not lead to any cheaper repairs than the older one, and therefore does not warrant
consideration. (In the following sections we will investigate to what extent the
assumption is justified.)

We give a high-level description of a combination of both phases.

The second phase was only sketched in McKenzie et al. [1995], but an imple-
mentation of the complete repair algorithm (embedded in the framework of Bison)
was made available at the Web site mentioned in that paper. The algorithm given
here is a compromise between the published algorithm, which is relatively simple
but comprises only the first phase in a formal way, and the C code we retrieved
from the Web, which comprises both phases but is much more complicated due to
several optimizations outside the scope of this communication.

Figure 1 describes some auxiliary operations. They include creation of variables
that can be shared and handling of pointers to such variables.

In the present article, the values of such variables will be subsets of LR states. In
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function Recover(< stack , input >):
begin
ClearQueue;
let ptr;,;, = CreateGlobal(0);
Enqueue(< stack , input >, €, €, 0, ptryp;: , 0);
while queue is not empty do
let (<gn---q2q1, tita---tm>,T, A, cost, ptr, h) = DeleteMin();
if §(q1,t1) # error then
return (T',A)
end;
if A = € then
if 1 ¢ 1(ptr)
then let 1(ptr) = 1(ptr) U {a1};
for each t € T do
TreatInsert(< gn - --g2q1, tit2---tm >, t, ', A, cost, ptr, h)
end
end
end;
let ptr,,, = CreateGlobal(();
Enqueue(<gn---q2q1, t2---tm >, ', At1, cost + D(t1), ptrpey , 0)
end;
return “no repair found”
end Recover.

Fig. 2. Main routine based on McKenzie et al. [1995].

actual implementations, such sets may be represented by bitmaps, with a one-to-one
correspondence between bits and LR states.

We also assume assignments I(¢t) and D(¢) to all input symbols ¢, represent-
ing costs of inserting and deleting individual symbols ¢, respectively. The cost
of inserting a string of symbols is defined to be the sum of the costs of insert-
ing the symbols individually: I(¢; ---tm,) = I(t1) + - - - + I(¢); similarly we define
D(t1---tm) = D(t1) + - - + D(¢m). The set of all input symbols is denoted by T
The function § represents the LR tables [Aho et al. 1986].

The main routine is given in Figure 2. It is to be called with the stack and input
as they were right after the last successful shift before detection of an error. It
consists of a loop which selects minimal elements from the queue and derives new
elements from them by considering possible insertions and then deletions.! Such
elements are 6-tuples consisting of

—a configuration, derived from the error configuration by means of inserts and
deletes, and — where appropriate — shifts and reductions,

—the list of inserts used,

—the list of deletes used,

—the sum of the costs of those inserts and deletes,

—a pointer to a set of LR states that have appeared on top of the stack, and

1 Allowing insertions and deletions to alternate arbitrarily causes solutions to be found more than
once.
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procedure TreatInsert(<gn - --q2q1, input >, t, ', A, cost, ptr, h):
begin
case §(q1,t) of
shift gg:
if g5 ¢ 1(ptr)
then Enqueue(< gqn - -g2q19s, input >, I't, A, cost +1(t), ptr, h+1)
end
reduce A — a:
DoReduce(< gn - --g2q1, tnput >, t, A— a, ', A, cost, ptr, h)
otherwise:
skip
end
end TreatInsert.

procedure DoReduce(< gn - --q2q1, input >, t, A — o, ', A, cost, ptr, h):
begin
let len = length of «a;
if len < h
then let hpew = h — len + 1;
let pir,., = ptr
else let hpew = 0;
let ptr,,, = CreateGlobal(0)
end;

let gnew = é(qlen+1aA)§
TreatInsert(< gn - - * Qlen+19new , tnput >, t, ', A, cost, ptr,e., , hnew)
end DoReduce.

Fig. 3. Secondary routines based on McKenzie et al. [1995].

—the number of stack symbols by which the stack has grown since creation of the
lowest stack in one of the ancestor configurations.

The loop is terminated when a configuration is found for which the LR table con-
tains a nonerror entry. We call such configurations repair configurations. Then the
associated lists of inserts and deletes are given as the result. The loop may also
terminate when the queue becomes empty, in which case no error repair is found.

The main routine makes use of the mutually recursive procedures TreatInsert
and DoReduce in Figure 3, which investigate the reductions and subsequent shift
that can be performed on a configuration resulting from an insert.

Initially, an empty set of LR states is created at the beginning of Recover. We
maintain a pointer to that set. For each configuration derived from the error con-
figuration, we investigate whether its top-of-stack is already in the set of LR states.
If so, the configuration is pruned. If not, the top of the stack is added to the set.

There are two occasions when we create a new, initially empty set of LR states.
The first one is when we perform a delete. The other one is when the height of
the stack shrinks below the height it had at the last time when a new set of LR
states was created, or equivalently, when regions of the stack are addressed which
have not been investigated before during the current repair attempt. For additional
explanation we refer to McKenzie et al. [1995].

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 1, January 1999.



On Failure of the Pruning Technique in “Error Repair in Shift-Reduce Parsers” . 5

3. DEFECTIVENESS OF PRUNING

In this section we show that the pruning mechanism may lead to suboptimal repairs
or may cause failure to produce any repair even if one exists. To simplify the
presentation, we will assume that the technique used to build LR tables is the
SLR(1) technique [Aho et al. 1986]. Our examples below could, however, be adapted
to obtain comparable results for LALR(1), LR(1), etc.?

The case of suboptimal repair is exemplified by the context-free grammar with
the following rules:

S — Ada|b
A — cd

where S and A are nonterminals, and a, b, ¢, and d are input symbols. We assume
I(a) = I(c) = I(d) = 1 and I(b) = 6; deletion costs are irrelevant to this example.
The sets of LR(0) items and the FOLLOW-sets are given in Figure 4. We assume
that an SLR(1) parser has been constructed from these data.

Assume that the incorrect input to the parser is the empty string, or more pre-
cisely, “#”, where # is the end-of-sentence marker. The error configuration is given
by <0, # >. Possible repairs are presented in the form of a search tree in Figure 4.
The arrows represent insertions. The input symbols enclosed in parentheses denote
the inserted symbols (cf. parameter ¢ in routine TreatInsert); inserted symbols that
do not allow any shift or reduction and therefore immediately lead to failure in the
next step were omitted from the figure.

A sequence of configurations between a pair of arrows represents a series of re-
ductions and a subsequent shift over the inserted symbol.

Two repairs can be found: one by means of inserting “b”, which has cost I(b) = 6,
and another one by means of inserting “cdcda”, which has cost I(cdeda) = 5. The
latter is therefore the cheaper repair, but it is never found if the algorithm from the
previous section is used, since the corresponding search path is pruned due to the
occurrence of state 1 on top of the stack in < 031, # >, after the earlier occurrence
in <01, #>.

That suboptimal repairs are produced may not be a serious problem in practice.
However, it may also occur that no repair at all is found even though one does
exist. This becomes clear if we remove the second alternative of S from the above
grammar:

S — AAa
A — cd

For this new grammar the search tree is similar to that in Figure 4, except that now
only one repair exists, with cost I(cdcda) = 5, and obtaining this repair depends on
allowing two occurrences of state 1. Therefore, the pruning mechanism will prevent
any repair from being found.

The previous pair of examples deals with two occurrences of a state which arise
in distinct configurations. There are, however, also examples where pruning due
to double occurrences in the same configuration leads to blocking of the cheapest
repair. (Failing to find any repair if one exists is however not possible in this

2The approach in McKenzie et al. [1995] uses default reductions in addition to LALR tables.
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<0,#>
IV NQ)
0 7 <0,(c)#> <0, (b)# >
S’ eS ‘ <01, %> <06,# >
S s e Ada 6 I(d)¢ repair with cost 6
S eb ‘ <0L, (d)# >
A ecd . 2 <012, # >
Y 0f
S AeAa <012, ()#> <012, (a)# >
A ecd <03, (c)# > <03, (a)# >
4 A 5 <031,# > 11! fail
: ol
<031, (d)# >
FOLLOW(S) = {#} <0312, # >

FOLLOW(A) = {c,a} 1)y \I(“L
<0312, (c)#> <0312, (a)# >
<034,(c)#> <034, (a)# >

fail <0345, # >
repair with cost 5

Fig. 4. The collection of sets of LR(0) items, in pictorial form, the FOLLOW-sets, and the search
tree of error repairs.

situation, except in the case of validation, as will be explained later on in this
section.)
One simple example is the grammar

S — aa | aSbe

and the incorrect input “ac#”, where we assume D(c) is sufficiently high. The
cheapest repair is then only reached if there are two occurrences of the state corre-
sponding with the set of items {S — aa ¢,5 > aea,S — ae Sbc,S — eaa,S —
e aSbc}.

We will not discuss this example in depth, but instead we demonstrate that the
phenomenon can be generalized to arbitrary k& > 1, i.e., that for any k we can find
a grammar, an input string, and a cost assignment, such that the optimal repair
cannot be reached unless some configuration is encountered which has k occurrences
of the same state. Such a grammar is given by

S—>A1|A2|...|Ak_1
A1 — adAjbc|a
Az — G,A3|

Ak—l — G,Al

We consider the input “c#” and assume the cost assignment is such that the
costs of deletions are high enough for repairs with only insertions to be cheaper
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8

<0,c#>
"
0 fS 2 <0, (a)ct#t >

s s —-IAl S Are |
e ! <O0L,c#t>
S — e A 3 #I( w‘
Ag a
S ed <01, (a)e#t > < OL, (b)c# >

A1 — e aAsbc <011,c# > <02, (b)c# >

Al > ea #I(a)wb)\“ fail

A2 = e aky 4 <011, (a)c#t > <011, (b)ctt >
1 e A}«‘ 41— adz e be | <OLlL,c#t> <017, (B)c#k >

A1 — a e Azbe ‘I(awi(b)cﬁb
. fail

<0111, (b)e# >

A1 —>ae

Az—)aOAl

A1 = e adsbe FOLLOW(S) = {#} <0117, (b)c# >
A1 > ea 7 FOLLOW(A:) = {b, #} <014, (b)c# >

Ay
Ay — e aA; —>| Az > aAj e FOLLOW(A3) = {b, #} <0145, et >
U a repair

Fig. 5. k = 3 occurrences of a state in a single stack.

than those with both deletions and insertions.

Figure 5 shows the LR automaton and the search tree for k = 3; we have omit-
ted parts of the search tree involving deletions, since deletions are regarded to be
prohibitively expensive. The cheapest repair involves k = 3 occurrences of state 1
in a single configuration.

Until now, we have not considered validation, which entails that commitment
to a repair is made only after a certain number of tokens have been processed
successfully. If however a further error is encountered too soon, the original er-
ror configuration is revisited; the second cheapest repair is applied; and again an
attempt is made to validate, etc.

In the case of validation with as little as one further input token, more examples
of failure of the pruning mechanism are observed, when validation does not succeed
and control is returned to the repair algorithm. (This is mentioned as a “subtle”
interaction in McKenzie et al. [1995].) For example, with grammar S — aSb | ¢ and
incorrect input “bb#”, the state reached by reading a is needed twice for producing
a repair that can be validated.

Validation complicates matters considerably. Its full treatment is beyond the
scope of the present article, and therefore further discussion is omitted.

All examples discussed so far involved multiple occurrences of states in a single
path in the search tree. Next, we discuss the interaction between different paths
that share variables. In such cases, the pruning mechanism may lead to either
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9

<0,#>

g~ N

o f£s <0,(#>  <0,(d)#>
S —>eS <0L,#> <02,# >
S e CDa 1B 19 0 49
S — e DCb <0L,(b)#> <01, (d)#> <02,(c)#> <02, (a)#>
¢ C—ec R <03, (b)#> <03,(d)#> <04,(c)#> <04,(a)#>
D= ed fail <032,%> 1 <041,#> ! fail
2 dy ye 1 P S 1) 1wy ~19
[ Dode| [cocel|| <032,(0%> <032,(@#> <o041,m)#> <041, (@)#>
3 df Foa ] <035,(#> <035,(a)#> <046,(B)#> <046, (d)# >
SsCeDal | S5 Decw| Foil <0357, #> <0468, # > fail
D S e d C S ec r'epaz'r TEPG/LT'
5 4D cy 6
| S—)C’Doa| | S—)DCobl FOLLOW(S) = {#}
7 Ja s FOLLOW(C) = {a, d}
| 5— cDae| | s> DCbe FOLLOW(D) = {b,c}

Fig. 6. A case of two search paths blocking each other.

suboptimal repairs or even failure to produce any repair. The latter situation
occurs for the grammar with the rules

S — CDa | DCb
C —»e¢
D — d

the input “#”, and a cost assignment such that I(a) = I(b) = I(c) = I(d) = 1.
Two repairs exist with equal costs: either “cda” or “dcb” may be inserted. The LR
automaton and the search tree are given in Figure 6.

The two alternatives for S are tried in an interleaved manner, due to the priority
queue. The occurrence of state 1 after inserting ¢ pertaining to the first alternative
for S blocks further processing of the second alternative at < 041, # >. In a similar
way, the first alternative is blocked due to the second alternative at <032, # >,
since state 2 has then already occurred at <02,# >. Hence, no repair at all is
found.

We summarize our findings:

—Pruning due to two occurrences of a state in the same search path may lead to
suboptimal repairs or to failure of the repair algorithm.

—Pruning due to two occurrences of a state in the same configuration may lead
to suboptimal repairs. This case of pruning may lead to failure of the repair
algorithm only if repairs are validated.

—Pruning due to two occurrences of a state in distinct search paths, by means
of shared variables, may lead to suboptimal repairs or to failure of the repair
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algorithm.

4. FURTHER WORK

As reported in McKenzie et al. [1995], the kind of pruning discussed in the previous
sections filters out a large number of configurations that are not considered further.

A consequence of this kind of pruning is however that it is very difficult to ana-
lyze the behavior of the pruning mechanism for concrete grammars, to predict at
compiler-generation time whether it will lead to suboptimal repairs, and possibly
to adapt the mechanism so that it dispenses with pruning in cases where otherwise
optimal repairs would be lost. We have therefore investigated alternative forms of
pruning which are less effective in terms of the decrease in the number of configu-
rations that have to be investigated, but which have useful properties allowing us
to perform substantial analysis at compiler-generation time.

One such form of pruning relies on bitmaps that are not shared among different
configurations. The bitmaps record the states that occur at certain heights in the
parse stack. Second occurrences at the same height or higher lead to pruning. If
the parse stack is popped below a certain height, the information about the states
that have occurred at that height is discarded.

We have implemented this kind of pruning and formulated a sufficient condition
for it to be safe, i.e., to preserve all optimal repairs. We found that in almost all
practical cases, pruning was safe. However, because this form is so much weaker
than the original one, its effectiveness is very low. This was established by measur-
ing the number of configurations constructed with and without pruning for several
hundred randomly introduced grammatical errors in public-domain Java applets
[Gosling et al. 1996]. The average reduction of the number of configurations typ-
ically amounts to a few percent. It might therefore be stated that this form of
pruning, taken for itself, is not really worth the additional effort at generation
time.

Another approach is to consider a weaker form of the notion of “safe”: we no
longer demand that optimal repairs result, but merely that some repair will result
if one exists. A sufficient condition for pruning to be safe can be formulated as
follows. For each state g and each symbol a we consider the development of the
repair algorithm given an error configuration with ¢ on top of the stack and a as
next input symbol, once with and once without pruning. (If pruning is not applied,
tabulation (cf. Earley [1970]) is needed to ensure termination.) No deletion of a
is allowed. We only consider the configurations up to a point where either ¢ is
popped off the stack, or a is a valid next input symbol for the current top-of-stack.
In the former case we note among other things how many more symbols beside g
are popped, and in the latter case we merely note that there was a repair for ¢ and
a.

If there are no differences in what we may achieve with and without pruning for
such “subcomputations” of the repair algorithm, then this means that pruning in
general is safe, i.e., it cannot lead to loss of repairs. This is because any computation
of the repair algorithm is composed of a number of such subcomputations. (Note
that if the stack is popped to below the original height, then a fresh bitmap is
introduced, according to DoReduce in Figure 3.)

This approach will be tested with programming language data in the future.
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We expect that blocking of all repairs will happen very seldom, if at all, in
practical programming languages. No such case was found in the Java examples.
This expectation is further supported by the observation that even cases where
pruning leads to more expensive repairs are by no means frequent. Again using the
above set of errors in Java source texts, we found that very few errors are repaired in
a more expensive way when the pruning facility is turned on. One notable exception
was due to the following Java construct which is very similar to our first example
of Section 3.

The Java conditional expression syntax

ConditionalOrEzpression 7 Expression : ConditionalExpression

forces a repetition of states in any repair that inserts all of what follows behind the
question mark, because fwo expressions are required. So if the erroneous text is
“g = (b > 0)?;” the repair string “identifier : identifier” cannot be produced
because the pruning mechanism prevents it.3

The usefulness of the pruning heuristic from McKenzie et al. [1995] appears to
be founded on the almost ubiquitous validity of a very simple set of assumptions,
which can be expressed as follows: when an error is detected, there is some repair
string with the following properties:

(1) No other repair string is less expensive than this one.

(2) It does not require any second occurrences of LR states in the process of its
construction.

(3) No other competing repair attempt will encounter one of the states used in this
attempt at an earlier point of time.

In spite of our findings concerning the formal defects of the pruning heuristic,
it is fair to state that unrestricted pruning is practically useful in a large majority
of cases. This study of shortcomings of the pruning mechanism can therefore be
concluded by recommending it with only minor reservations.
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