
An innovative finite state concept for
recognition and parsing of context free

languages

Mark-Jan Nederhof Eberhard Bertsch

An innovative FS concept 1

Abstract

We recall the notion of regular closure of classes of languages. We show that all
languages which are in the regular closure of the class of deterministic (context-
free) languages can be recognized in linear time. This is a nontrivial result, since
this closure contains many inherently ambiguous languages.
1 Introduction

In a series of recent articles (Bertsch 1994; Nederhof and Bertsch 1996), the au-
thors have studied recognition and parsing of context-free languages by means of
previously unknown simulations of nondeterministic techniques. The motivation
for this work came from error detection problems, and as a matter of fact an open
problem of long standing could be solved in that area.

Most notably, a core concept that turned out to be helpful in the course of this
research can be interpreted as a two-level parser whose upper level is a finite
automaton with nonterminal labels at its edges and whose lower level consists of
languages associated to each such label.

If all lower-level languages are assumed to be deterministic, the class of lan-
guages characterized in this new way can be shown to be parsable in linear time.
This constitutes a genuine surprise because some of the languages included are
not deterministic, in fact inherently ambiguous. Furthermore, even if languages
at the lower level are restricted to the properly smaller LR(0) class, the language-
generating capability of our two-level devices stays the same.

Natural-language parsing cannot be implemented by exclusive use of determin-
istic techniques, since many constructs in natural languages are inherently non-
deterministic. A consequence of our findings is that this fact does not necessarily
preclude the possiblity of natural-language parsing in linear time.

2 Informal exposition

In this section we give an overview of the paper, by means of an informal example.
For expositional reasons, we will use some familiar terms taken from linguistics.
We emphasize, however, that this section is not intended to convey any specific
insights about the structure of natural languages.

Consider an imaginary natural language with the following properties. There
are two kinds of sentences. The first kind consists of a noun phrase (NP), fol-
lowed by a verb phrase (VP), a number of prepositional phrases (PPs), and finally
some auxiliary construct (AUX). The second kind consists of a verb phrase fol-
lowed by a noun phrase. Assume further that the respective sets of the NPs, VPs,
PPs and AUXs are deterministic languages, i.e. they are accepted by deterministic
pushdown automata. Let us call these automata NP, VP, PP and AUX, identify-
ing them with the kinds of phrases they recognize, and let us call the accepted
languages: L

�
NP � , L

�
VP � , L

�
PP � and L

�
AUX � , respectively. Pushdown automata

are formally defined in Section 3.

2 Mark-Jan Nederhof and Eberhard Bertsch

VP

NP

NP

PP

VP
AUX

q

q q

q
0 3

21

q
4

Figure 1: Meta-deterministic automaton for an imaginary natural language

There are two ways to describe our natural language. The first is as a regular
expression over the languages of the NPs, VPs, PPs and AUXs, namely:

L
�
NP ��� L � VP ��� L � PP ����� L � AUX ��� L

�
VP �	� L � NP �

The second way to describe the language is more operational, in terms of an
automaton. This meta-deterministic automaton, given in Figure 1, is essentially
a finite automaton, but instead of having terminal symbols at the transitions, we
have pushdown automata recognizing NPs, VPs, PPs or AUXs. The initial state
is q0, and q3 is the only final state.

Both kinds of description are equivalent, and in general such descriptions yield
the meta-deterministic languages, to be formally introduced in Section 4. The lat-
ter kind of description, in terms of automata, is needed when the time complexity
of recognition is discussed.

To illustrate the recognition problem for the natural language of the running ex-
ample, consider some input consisting of 14 words from the lexicon: a1a2 ����� a14.
To decide whether this input is a syntactically correct sentence, we perform recog-
nition in two steps. First, we find all substrings of the input that are NPs, and those
that are VPs, etc. Those substrings can be represented by means of “edges”, as
shown in Figure 2: the dots, which separate the words in the input, represent the
input positions, and labelled edges between pairs of dots indicate that the covered
substrings are phrases of certain kinds. For example, there is an edge labelled PP
which spans the substring a6a7a8a9a10, indicating that this substring is a preposi-
tional phrase.

The second step is to find paths from the first input position to the last, and
from the initial state in the automaton to a final state, by simultaneously follow-
ing the edges and the transitions, so that the labels of the edges and transitions
match pairwise. In the example, there are two ways to recognize the input; the
simplest one follows two consecutive edges labelled VP and NP, spanning sub-
strings a1a2 �
��� a8 and a9 ����� a14, respectively, and two transitions labelled VP and
NP, which make the automaton go through states q0, q4 and q3.

An innovative FS concept 3
VP PP

NP

AUXPP
PPVPNP

a a a1 a a a a a a a a a a a

0 1 2 4 2 2 3
q q q q q q q

141312111098765432

Figure 2: Edges for input a1 �
��� a14 and corresponding states from Figure 1

A practical way to handle the second phase is to associate each input position
with one or more states that the finite automaton can be in while following edges
from left to right, using a dynamic programming algorithm to be presented in
Section 6. Figure 2 gives the resulting states below the input positions.

With this dynamic programming algorithm, the recognition problem can be
trivially solved in linear time with respect to the length of the input, provided:� there is a linear number of edges, and� all of those edges can be found in linear time.

Both concerns are closely related, but they will be treated separately. In Section 4
we will show that we may assume that each lower-level deterministic language
(cf. L

�
NP �) is prefix-free, without loss of generality with regard to the upper-level

language that is described (cf. our imaginary natural language). That the lower-
level languages are prefix-free informally means that from each input position and
each label there is at most one outgoing edge with that label to some subsequent
input position. Obviously, this implies that the number of edges will be linear.

The second concern, which is the computation of the edges itself, is solved in
Section 5. A standard tabular recognition algorithm which simulates the steps of
the pushdown automata does not immediately yield a linear time complexity, until
after a transformation of the pushdown automata, which is based on a fairly deep
discussion of individual pushing and popping moves.

Further in this paper, in Section 7, we discuss an “on-line” variant of the recog-
nition algorithm, which processes the input strictly from left to right, avoiding
unnecessary steps.

Although the concept of parse tree is less immediate for the new kind of lan-
guage description than for ordinary context-free grammars, we are able to sketch

4 Mark-Jan Nederhof and Eberhard Bertsch

an efficient transduction procedure yielding representations of the syntactic struc-
ture of given inputs (Section 8).

An application in pattern matching is described in Section 9, and some obser-
vations with respect to natural language processing are made in Section 10.

3 Notation

A finite automaton F is a 5-tuple
�
S � Q � qs � F � T � , where S and Q are finite sets of

input symbols and states, respectively; qs Q is the initial state, F � Q is the set
of final states; the transition relation T is a subset of Q � S � Q.

An input b1 ���
� bm S � , is recognized by the finite automaton if there is a se-
quence of states q0 � q1 ���
����� qm such that q0 � qs,

�
qk � 1 � bk � qk � T for 1 � k � m,

and qm F . For a certain finite automaton F , the set of all such strings w is
called the language accepted by F , denoted L

�
F � . The languages accepted by

finite automata are called the regular languages.
In the following, we describe a type of pushdown automaton without internal

states and with very simple kinds of transition. This is a departure from the stan-
dard literature but considerably simplifies our definitions in the remainder of the
paper. The generative capacity of this type of pushdown automaton is not affected
with respect to any of the more traditional types.

Thus, we define a pushdown automaton (PDA) A to be a 5-tuple
�
Σ � ∆ � Xinitial �

F � T � , where Σ, ∆ and T are finite sets of input symbols, stack symbols and transi-
tions, respectively; Xinitial ∆ is the initial stack symbol, F � ∆ is the set of final
stack symbols.

We consider a fixed input string a1 �
��� an Σ � . A configuration of the automaton
is a pair

�
δ � v � consisting of a stack δ ∆ � and the remaining input v, which is a

suffix of the original input string a1 �
��� an.
The initial configuration is of the form

�
Xinitial � a1 ���
� an � , where the stack is

formed by the initial stack symbol Xinitial. A final configuration is of the form�
δX � ε � , where the element on top of the stack is some final stack symbol X F .

The transitions in T are of the form X
z�� XY , where z � ε or z � a, or of the

form XY
ε�� Z.

The application of such a transition δ1
z�� δ2 is described as follows. If the

top-most symbols on the stack are δ1, then these may be replaced by δ2, provided
either z � ε, or z � a and a is the first symbol of the remaining input. If z � a then
furthermore a is removed from the remaining input.

Formally, for a fixed PDA we define the binary relation � on configurations as
the least relation satisfying

�
δδ1 � v ��� � δδ2 � v � if there is a transition δ1

ε�� δ2, and�
δδ1 � av ��� � δδ2 � v � if there is a transition δ1

a�� δ2.
In the case that we consider more than one PDA at the same time, we use

symbols
z��

A and � A instead of
z�� and � if these refer to one particular PDA A .

The recognition of a certain input v is obtained if starting from the initial con-
figuration for that input we can reach a final configuration by repeated application

An innovative FS concept 5

of transitions, or, formally, if
�
Xinitial � v ��� � � δX � ε � , with some δ ∆ � and X F ,

where � � denotes the reflexive and transitive closure of � (and ��� denotes the
transitive closure of �). For a certain PDA A , the set of all such strings v which
are recognized is called the language accepted by A , denoted L

�
A � . A PDA

is called deterministic if for all possible configurations at most one transition is
applicable. The languages accepted by deterministic PDAs (DPDAs) are called
deterministic languages.

We may restrict deterministic PDAs such that no transitions apply to final con-
figurations, by imposing X � F if there is a transition X

z�� XY , and Y � F if
there is a transition XY

ε�� Z. We call such a DPDA prefix-free. The languages ac-
cepted by such deterministic PDAs are obviously prefix-free, which means that no
string in the language is a prefix of any other string in the language. Conversely,
any prefix-free deterministic language is accepted by some prefix-free DPDA, the
proof being that in a deterministic DPDA, all transitions of the form X

z�� XY ,
X F , and XY

ε�� Z, Y F , can be removed without consequence to the accepted
language if this language is prefix-free.

In compiler design, the deterministic languages are better known as LR(k) lan-
guages, and the prefix-free deterministic languages as LR(0) languages (Hopcroft
and Ullman 1979).

A prefix-free DPDA is in normal form if, for all input v,
�
Xinitial � v ��� � � δX � ε � ,

with X F , implies δ � ε, and furthermore F is a singleton � Xfinal � . Any prefix-
free DPDA can be put into normal form. We define a normal PDA (NPDA) to be
a prefix-free deterministic PDA in normal form.

We define a subrelation � � � of ��� as:
�
δ � vw ��� � � � δδ !� w � if and only if

�
δ � vw � ��

δ � z1z2 ���
� zmw �"� �
δδ1 � z2 ���
� zmw �#�$�
����� �

δδm � w � � �
δδ !� w � , for some m % 1,

where � δk �'& 0 for all k, 1 � k � m. Informally, we have
�
δ � vw �(� � � �

δδ !� w � if
configuration

�
δδ � w � can be reached from

�
δ � vw � without the bottom-most part

δ of the intermediate stacks being affected by any of the transitions; furthermore,
at least one element is pushed on top of δ. Note that

�
δ1X � vw �)� � � �

δ1Xδ !� w �
implies

�
δ2X � vw *�#� � � �

δ2Xδ +� w *� for any δ2 and any w , since the transitions do
not address the part of the stack below X , nor read the input following v.

4 Meta-deterministic languages

In this section we define a new sub-class of the context-free languages, which
results from combining deterministic languages by the operations used to specify
regular languages.

We first define the concept of regular closure of a class of languages.1 Let L
be a class of languages. The regular closure of L , denoted C

�
L � , is defined as the

smallest class of languages such that:

1 This notion was called rational closure in (Berstel 1979).

6 Mark-Jan Nederhof and Eberhard Bertsch� /0 C
�
L � ,� if l L then l C

�
L � ,� if l1 � l2 C

�
L � then l1l2 C

�
L � ,� if l1 � l2 C

�
L � then l1 � l2 C

�
L � , and� if l C

�
L � then l � C

�
L � .

Note that a language in C
�
L � may be described by a regular expression over

symbols representing languages in L .
Let D denote the class of deterministic languages. Then the class of meta-

deterministic languages is defined to be its regular closure, C
�
D � . This class

is obviously a subset of the class of context-free languages, since the class of
context-free languages is closed under concatenation, union and Kleene star, and
it is a proper subset, since, for example, the context-free language � wwR � w � a � b � � � is not in C

�
D � . (wR denotes the mirror image of w.)

Finite automata constitute a computational representation for regular languages;
DPDAs constitute a computational representation for deterministic languages. By
combining these two mechanisms we obtain the meta-deterministic automata,
which constitute a computational representation for the meta-deterministic lan-
guages.

Formally, a meta-deterministic automaton M is a triple
�
F � A � µ � , where F ��

S � Q � qs � F � T � is a finite automaton, A is a finite set of deterministic PDAs with
identical alphabets Σ, and µ is a mapping from S to A.

The language accepted by such a device is composed of languages accepted by
the DPDAs in A according to the transitions of the finite automaton F . Formally,
a string v is recognized by automaton M if there is some string b1 �
��� bm S � , a
sequence of PDAs A1 � A2 �
������� Am A, and a sequence of strings v1 �
�����
� vm Σ �
such that� b1 �
��� bm L

�
F � ,� Ak � µ

�
bk � , for 1 � k � m,� vk L

�
Ak � , for 1 � k � m, and� v � v1 ����� vm.

The set of all strings recognized by automaton M is called the language ac-
cepted by M , denoted L

�
M � .

Example 1 As a simple example of a language accepted by a meta-deterministic
automaton, consider L � L1 � L2, where L1 � � ambncn � n � m � 0 � 1 ���
��� �'� and
L2 � � ambmcn � n � m � 0 � 1 �
���
� �'� . It is well-established that L is not a determin-
istic language (Hopcroft and Ullman 1979, Example 10.1). However, it is the
union of two languages L1 and L2, which are by themselves deterministic. There-
fore, L is accepted by a meta-deterministic automaton M which uses two DPDAs
A1 and A2, accepting L1 and L2, respectively.

We may for example define M as
�
F �,� A1 � A2 � � µ � with F � �

S � Q � qs � F � T � ,
where

An innovative FS concept 7

- .0/1324
5

6 7

-
8 9

q fqs

A1

A2

::;;

Figure 3: A meta-deterministic automaton

� S � � b1 � b2 � ,� Q � � qs � q f � ,� F � � q f � ,� T � � � qs � b1 � q f �<� � qs � b2 � q f � � , and� µ
�
b1 � � A1 and µ

�
b2 � � A2.

A graphical representation for M is given in Figure 3. States q Q are rep-
resented by vertices labelled by q, triples

�
q � b � p � T by arrows from q to p

labelled by µ
�
b � . We saw this notation before in Figure 1.

That the meta-deterministic automata precisely accept the meta-deterministic
languages is reflected by the following equation.

C
�
D � � � L � M �(� M is a meta-deterministic automaton �

This equation straightforwardly follows from the equivalence of finite automata
and regular expressions, and the equivalence of deterministic pushdown automata
and deterministic languages.

Let N denote the class of prefix-free deterministic languages. In the same vein,
we have

C
�
N � � � L � M �(� M � �

F � A � µ � is a meta-deterministic automaton where
A is a set of normal PDAs �

In the sequel, we set out to investigate a number of properties of languages in
C
�
D � , represented by their meta-deterministic automata (i.e. their corresponding

recognition devices). The DPDAs in an arbitrary such device cause some techni-
cal difficulties which may be avoided if we restrict ourselves to meta-deterministic
automata which use only normal PDAs, as opposed to arbitrary deterministic
PDAs. Fortunately, this restriction does not reduce the class of languages that
can be described, or in other words, C

�
N � � C

�
D � . We prove this equality be-

low.

8 Mark-Jan Nederhof and Eberhard Bertsch

Since C
�
N �=� C

�
D � is vacuously true, it is sufficient to argue that D � C

�
N � ,

from which C
�
D ��� C

�
C
�
N �
� � C

�
N � follows using the closure properties of C,

in particular monotonicity and idempotence.
We prove that D � C

�
N � by showing how for each DPDA A a meta-deter-

ministic automaton ρ
�
A � � �

F � A � µ � may be constructed such that A consists
only of prefix-free deterministic PDAs, and L

�
ρ
�
A �
� � L

�
A � . This construction is

given by:

Construction 1 Let A � �
Σ � ∆ � Xinitial � FA � TA � be a deterministic PDA. Con-

struct the meta-deterministic automaton ρ
�
A � � �

F � A � µ � , with F � �
S � Q � qs � FF �

TF � , where� S � � bX >Y � X � Y ∆ � �?� cX >Y � X � Y ∆ � ,� Q � ∆,� qs � Xinitial,� FF � FA ,� TF � � � X � bX >Y � Y �@� X � Y ∆ � �A� � X � cX >Y � Y �(� X � Y ∆ � .
The set A consists of (prefix-free deterministic) PDAs BX >Y and CX >Y , for all X � Y
∆, defined as follows.

Each BX >Y is defined to be
�
Σ �,� X in � Y out � � X in �,� Y out � � T � , where X in and Y out

are fresh symbols, and where the transitions in T are

X in z��
BX BY X inY out for all X

z��
A XY , some z

Each CX >Y is defined to be
�
Σ � ∆ �C� X in � Y out � � X in �,� Y out � � T � , where X in and

Y out are fresh symbols, and where the transitions in T are those in TA plus the
extra transitions

X in z��
CX BY X inZ for all X

z��
A XZ, some z and Z

X inZ
ε��

CX BY Y out for all XZ
ε��

A Y , some Z

The function µ maps the symbols bX >Y to automata BX >Y and the symbols cX >Y
to automata CX >Y .

Each automaton BX >Y mimics a single transition of A of the form X
z��

A XY .
Formally, BX >Y recognizes a string z if and only if

�
X � z ��� A

�
XY � ε � .

Each automaton CX >Y mimics a computation of A that replaces stack element X
by stack element Y . Formally, CX >Y recognizes a string v if and only if

�
X � v �#� � �A�

XZ � ε ��� A
�
Y � ε � , for some Z ∆.

The correctness of the above construction is proved at length in (Bertsch and
Nederhof 1995).

We conclude

Theorem 1 C
�
N � � C

�
D �

An innovative FS concept 9

D

E0FG0HD

E0FG0HD

E0FG0HDI I J J J J J J J J J J J J�K

I I I I I I I I I I I I�L

MN

M
E3FG3H

NO

O

JJ
M

P
Q

R
S

R
S

P
Q

T

U

U

CI

A

B

BA > A

BB > B

BI > A

BI > B

BB > A BA > B

BA >C

BB >C

CA >C
CB >C

BI >C

V V V V V V V V V V V V�W

X X X X X X X X X X X X�Y

Figure 4: Meta-deterministic automaton ρ
�
APrePal �

This theorem can be paraphrased as “The class of LR(k) languages is contained
in the regular closure of the class of LR(0) languages”.

Example 2 We demonstrate Construction 1 by means of an example. Consider
the language LPal � � wcwR � w � a � b � � � , where wR denotes the mirror image of
string w. This language consists of palindromes in which a symbol c occurs as
the center of each palindrome.

Now consider the language LPrePal � � v �[Z w \ vw LPal]+� , consisting of all
prefixes of palindromes. This language, which is obviously not prefix-free, is
accepted by the PDA APrePal =

�
Σ � ∆ � I � F � T � , with Σ = � a � b � c � , ∆ = � I � A � B � C �

A � A � B � B � , F = � I � A � B � C � , and T consists of the following transitions:

X
a�� XA for X � I � A � B �

X
b�� XB for X � I � A � B �

X
c�� XC for X � I � A � B �

C
a�� CA

CA
ε�� A

AA
ε�� C

C
b�� CB

CB
ε�� B

BB
ε�� C

The automaton operates by pushing each a or b it reads onto the stack in the form

10 Mark-Jan Nederhof and Eberhard Bertsch

of A or B, until it reads c, and then the symbols read are matched against the
occurrences of A and B on the stack. Note that F is � I � A � B � C � , which means
that a recognized string may be the prefix of a palindrome instead of being a
palindrome itself.

The upper level of the meta-deterministic automaton ρ
�
APrePal � is shown in

Figure 4. (Automata accepting the empty language have been omitted from this
representation, as well as vertices which after this omission do not occur on any
path from I to any other final state.)

The automaton BA > B accepts the language � b � , since the only pushing transition
of APrePal which places B on top of A reads b. As another example of a lower level
automaton, automaton CA >C accepts the language � wa � w LPal � , since

�
A � v �=� � �A�

AZ � ε �^� A
�
C � ε � , some Z, only holds for v of the form wa, with w LPal; for

example
�
A � bcba �_� A

�
AB � cba �_� A

�
ABC � ba �`� A

�
ABCB � a �_� A

�
ABB � a �_� A�

AC � a �=� A
�
ACA � ε �=� A

�
AA � ε �a� A

�
C � ε � .

5 Recognizing fragments of a string

In this section we investigate the following problem. Given an input string a1 �
��� an

and an NPDA A , find all pairs of input positions
�
j � i � such that substring a j � 1 ���
� ai

is recognized by A ; or in other words, such that
�
Xinitial � a j � 1 ���
� ai ��� � � Xfinal � ε � .

It will be shown that this problem can be solved in linear time.
For technical reasons we have to assume that the stack always consists of at

least two elements. This is accomplished by assuming that a fresh stack symbolb
occurs below the bottom of the actual stack, and by assuming that the actual

initial configuration is created by an imaginary extra step
� b � v ��� � b Xinitial � v � .

The original problem stated above is now generalized to finding all 4-tuples�
X � j � Y � i � , with X � Y ∆ and 0 � j � i � n, such that

�
X � a j � 1 ����� ai �#� � � �

XY � ε � .
In words, this condition states that if a stack has an element labelled X on top then
the pushdown automaton can, by reading the input between j and i and without
ever popping X , obtain a stack with one more element, labelled Y , which is on top
of X . Such 4-tuples are henceforth called items.

The items are computed by a dynamic programming algorithm based on work
from (Aho et al. 1968; Lang 1974; Billot and Lang 1989; Nederhof 1994).

It can be proved (Aho et al. 1968; Lang 1974) that Algorithm 1 in Figure 5
eventually adds an item

�
X � j � Y � i � to U if and only if

�
X � a j � 1 �
��� ai �)� � � �

XY �
ε � . Specifically,

� b � j � Xfinal � i � U is equivalent to
� b � a j � 1 �
��� ai �@� � b

Xinitial �
a j � 1 �
��� ai ��� � � b Xfinal � ε � . Therefore, the existence of such an item

� b � j � Xfinal � i � U, or equivalently, the existence of
�
j � i � V , indicates that substring a j � 1 ����� ai

is recognized by A , which solves the original problem stated at the beginning of
this section.

If no restrictions apply, the number of 4-tuples computed in U can be quadratic
in the length of the input. The central observation is this: It is possible that items�
X � j � Y � i � U are added for several (possibly linearly many) i, with fixed X , j

An innovative FS concept 11

Algorithm 1 Consider an NPDA and an input string a1 ���
� an.

1. Let the set U be � � b � i � Xinitial � i �@� 0 � i � n � .
2. Perform one of the following two steps as long as one of them is applicable.

push

1. Choose a pair, not considered before, consisting of a transition
X

z�� XY and an input position j, such that z � ε c z � a j � 1.
2. If z � ε then let i � j, else let i � j d 1.
3. Add item

�
X � j � Y � i � to U.

pop

1. Choose a triple, not considered before, consisting of a transition
XY

ε�� Z and items
�
W � h � X � j �<� � X � j � Y � i � U.

2. Add item
�
W � h � Z � i � to U.

3. Finally, define the set V to be � � j � i �(� � b � j � Xfinal � i � U � .
Figure 5: Recognition of fragments of the input

and Y . This may happen if
� b � ah ����� a j ���
� aim �e� � � δX � a j � 1 ���
� aim ��� � � �

δXY �
ai1 � 1 �
��� aim � and

�
Y � ai1 � 1 ����� aim ���[� � Y � ai2 � 1 �
��� aim �f���?�����g��� � Y � aim h 1 � 1 ����� aim �� � � Y � ε � , which leads to m items

�
X � j � Y � i1 � , ���
� , � X � j � Y � im � . Such a situation can

in the most trivial case be caused by a pair of transitions X
z�� XY and XY

ε�� X ;
the general case is more complex however.

On the other hand, whenever it can be established that for all X , j and Y there
is at most one i with

�
X � j � Y � i � being constructed, then the number of entries

computed in U is linear in the length of the input string, and we get a linear time
bound.

The following definition identifies the intermediate objective for obtaining a
linear complexity. We define a PDA to be loop-free if

�
X � v �a��� �

X � ε � does not
hold for any X and v. The intuition is that reading some input must be reflected
by a change in the stack.

Our solution to linear-time recognition for automata which are not loop-free is
the following: We define a language-preserving transformation from one NPDA
to another which is loop-free. Intuitively, this is done by pushing extra elements X
on the stack so that we have

�
X � v ����� �

XX � ε � instead of
�
X � v ����� �

X � ε � , where
X is a special stack symbol to be defined shortly.

As a first step we remark that for a normal PDA we can divide the stack symbols
into two sets PUSH and POP, defined by

PUSH � � X � there is a transition X
z�� XY �

POP � � Y � there is a transition XY
ε�� Z � �A� Xfinal �

12 Mark-Jan Nederhof and Eberhard Bertsch

A τ
�
A �

X ε�� X X
X

a�� XY X
a�� XY

XY
ε�� X XY

ε�� X

X
ε�� XX

X
b�� XZ X

b�� XZ

XZ
ε�� P XZ

ε�� P

XP
ε�� P (Some other transitions of this

form have been omitted,
because they are useless.)

X P ε�� P
Figure 6: The transformation τ applied to a NPDA A

It is straightforward to see that determinism of the PDA requires that PUSH and
POP are disjoint. We may further assume that each stack symbol belongs to
either PUSH or POP, provided we assume that the PDA is reduced, meaning that
there are no transitions or stack symbols which are useless for obtaining the final
configuration from an initial configuration.

Construction 2 Consider an NPDA A � �
Σ � ∆ � Xinitial ��� Xfinal � � T � of which

the set of stack symbols ∆ is partitioned into PUSH and POP, as explained above.
From this NPDA a new PDA τ

�
A � � �

Σ � ∆ !� X initial �,� X final � � T *� is constructed,

X initial and X final being fresh symbols, where ∆ � ∆ �?� X initial � X final � �?� X � X
PUSH � , X being fresh symbols, and the transitions in T are given by

XY
ε��

τ i A j Z for XY
ε��

A Z with Z POP

XY
ε��

τ i A j Z for XY
ε��

A Z with Z PUSH

X
ε��

τ i A j XX for X PUSH

X Y
ε��

τ i A j Y for X PUSH � Y POP

X
z��

τ i A j XY for X
z��

A XY

and the two transitions X initial
ε��

τ i A j X initialXinitial and X initialXfinal
ε��

τ i A j X final.

Example 3 We demonstrate this construction by means of an example.
Consider the NPDA A � � � a � b � ��� X � Y � Z � P � � X �,� P � � T � , where T contains the

transitions given in the left half of Figure 6. It is clear that A is not loop-free:
we have

�
X � a �k� �

XY � ε �k� �
X � ε � . If the input a1 ���
� an to Algorithm 1 is an, then� b � a j � 1 ����� ai �@� � � � b

X � ε � and therefore
� b � j � X � i � U, for 0 � j � i � n. This

explains why the time complexity is quadratic.

An innovative FS concept 13

A τ
�
A �

stack input stack input
X aab X aab

X X aab
XY ab X XY ab
X ab X X ab

X XX ab
XY b X XXY b
X b X X X b

X X XX b
XZ X X XXZ
P X X XP

X XP
X P
P

Figure 7: The sequences of configurations recognizing aab, using A and τ
�
A �

We divide the stack symbols into PUSH � � X � and POP � � Y � Z � P � . Of the
transformed automaton τ

�
A � � � � a � b � �,� X � Y � Z � P� X !� P !� X � � X +�l� P � � T m� , the

transitions are given in the right half of Figure 6.
The recognition of aab by A and τ

�
A � is compared in Figure 7.

As proved in (Bertsch and Nederhof 1995), if A is an NPDA then τ
�
A � is a

loop-free NPDA that accepts the same language as A .
Because of this property of construction τ, we can state the following without

loss of generality for NPDAs:

Theorem 2 For a loop-free NPDA, Algorithm 1 has linear time demand, mea-
sured in the length of the input.

6 Meta-deterministic recognition

With the results from the previous section we can prove that the recognition prob-
lem for meta-deterministic languages can be solved in linear time, by giving a
tabular algorithm simulating meta-deterministic automata.

Consider a meta-deterministic automaton M � �
F � A � µ � . Because of Theo-

rem 1 we may assume without loss of generality that the DPDAs in A are all
normal PDAs. Because of the existence of τ, we may furthermore assume that
those normal PDAs are loop-free.

For deciding whether some input string a1 �
��� an is recognized by M we first
determine which substrings of the input are recognized by which NPDAs in A.

14 Mark-Jan Nederhof and Eberhard Bertsch

Algorithm 2 Consider a meta-deterministic automaton M � �
F � A � µ � , where

F � �
S � Q � qs � F � T � and A is a finite set of loop-free NPDAs, and consider an

input string a1 �
��� an.

1. Construct the tables VA as the sets V in Algorithm 1, for the respective A A
and input a1 ���
� an.

2. Let the set W be � � qs � 0 � � . Perform the following as long as it is applicable.

A. Choose a quadruple not considered before, consisting of� a pair
�
q � j � W ,� a PDA A A,� a pair
�
j � i � VA , and� a state p Q,

such that
�
q � b � p � T for some b with µ

�
b � � A .

B. Add
�
p � i � to W .

3. Recognize the input when
�
q � n � W , for some q F .

Figure 8: Recognition for meta-deterministic languages

Then, we traverse the finite automaton, identifying the input symbols of F with
automata which recognize consecutive substrings of the input string. In order to
obtain linear time complexity, we again use tabulation, this time by means of pairs�
q � i � , which indicate that state q has been reached at input position i.

The complete algorithm is given in Figure 8.
Taking into account Theorem 2, we now get the main result of this paper.

Theorem 3 Recognition can be performed in linear time for all meta-deter-
ministic languages.

7 On-line simulation

The nature of Algorithm 2 as simulation of meta-deterministic automata is such
that it could be called an off-line algorithm. A case in point is that it simulates
steps of PDAs at certain input positions where this can never be useful for recogni-
tion of the input if the preceding input were taken into account. By processing the
input strictly from left to right and by computing the table elements in a demand-
driven way, an on-line algorithm is obtained, which leads to fewer table elements,
although the order of the time complexity is not reduced.

The realisation of this on-line algorithm consists of two steps: first we adapt the
pushing step so that the PDAs by themselves are simulated on-line, and second,
we merge Algorithm 1 and Algorithm 2 such that they cooperate by passing con-
trol back and forth concerning (1) where a PDA should start to try to recognize

An innovative FS concept 15

a subsequent substring according to the finite automaton, and (2) at what input
position a PDA has succeeded in recognizing a substring. Conceptually, the finite
automaton and the PDAs operate in a routine-subroutine relation. The resulting
on-line algorithm is given in (Bertsch and Nederhof 1995).

A device which recognizes some language by reading input strings from left
to right is said to satisfy the correct-prefix property if it cannot read past the first
incorrect symbol in an incorrect input string. A different way of expressing this
is that if it has succeeded in processing a prefix w of some input string wv, then w
is a prefix of some input string wv which can be recognized.

A consequence of the on-line property of the algorithm suggested above is that
it satisfies the correct-prefix property, provided that both the finite automaton F
and the PDAs in A satisfy the correct-prefix property.

8 Producing parse trees

We have shown that meta-deterministic recognition can be done efficiently. The
next step is to investigate how the recognition algorithms can be extended to be
parsing algorithms.

The approach to tabular context-free parsing in (Lang 1974; Billot and Lang
1989) is to start with pushdown transducers. A pushdown transducer can be seen
as a PDA of which the transitions produce certain output symbols when they are
applied. The output string, which is a list of all output symbols which are pro-
duced while successfully recognizing an input, is then seen as a representation of
the parse.

If the pushdown transducers are to be realized using a tabular algorithm such
as Algorithm 1 then we may apply the following to compute all output strings
without deteriorating the time complexity of the recognition algorithm. The idea
is that a context-free grammar, the output grammar, is constructed as a side-effect
of recognition. For each item

�
X � j � Y � i � added to the table, the grammar contains

a nonterminal A i X > j >Y > i j . This nonterminal is to generate all lists of output sym-
bols which the pushdown transducer produces while computing

�
X � a j � 1 �
��� ai �� � � �

XY � ε � . The rules of the output grammar are created when items are com-
puted from others. For example, if we compute an item

�
W � h � Z � i � from two

items
�
W � h � X � j �<� � X � j � Y � i � U, using a popping transition XY

ε�� Z which pro-
duces output symbol a, then the output grammar is extended with rule A i W > h > Z > i j �
A i W > h > X > j j A i X > j >Y > i j a.

The start symbol of the output grammar is A ion[> 0 > Xfinal > n j , for recognition of the

complete input. For Algorithm 1 however, which recognizes fragments of the
input, we have several output grammars, of which the start symbols are of the
form A ion�> j > Xfinal > i j . The sets of rules of these grammars may overlap.

The languages generated by output grammars consist of all output strings which
may be produced by the pushdown transducer while successfully recognizing the

16 Mark-Jan Nederhof and Eberhard Bertsch

corresponding substrings. In the case of deterministic PDAs, these are of course
singleton languages.

In a straightforward way this method may be extended to off-line simulation
of a meta-deterministic automaton M � �

F � A � µ � , where A is now a set of push-
down transducers:

1. We create subgrammars for v and the respective automata in A separately,
following the ideas above.

2. We merge all grammar rules constructed for the different automata A
A. We assume the sets of stack symbols from the respective automata
are pairwise disjoint, in order to avoid name clashes.

3. For each A A we add rules A i A > j > i j � A ipn[> j > Xfinal > i j , if A ion�> j > Xfinal > i j is a

nonterminal found while constructing UA .
4. While constructing table W the output grammar may be extended with

a rule A i p > i j � A i q > j j A i A > j > i j , when a pair
�
p � i � is derived from a pair�

q � j � W and a pair
�
j � i � VA .

5. We extend the output grammar with all rules of the form S � �
q � n � ,

where q F . S is the start symbol of the grammar.

In this way, we may produce a context-free grammar reflecting the structure
of the input string, without deteriorating the time complexity of the recognition
algorithm.

9 Generalized pattern matching

In (Knuth et al. 1977) the following problem is treated. Given are a finite set of
input symbols Σ, an input string a1 ���
� an Σ � and a pattern b1 ����� bm Σ � . To be
decided is whether a1 �
��� an � vb1 �
��� bmw, some v� w Σ � , or in words, whether
b1 ����� bm is a substring of a1 ���
� an.

This problem can also be stated as follows. To be decided is whether a1 ����� an is
a member of the language Σ � � b1 ����� bm � Σ � . This language is described as a regular
expression over deterministic languages, i.e. Σ and � b1 �
��� bm � , and therefore this
language is meta-deterministic. Consequently, the algorithms in this paper apply.

The time demand can then be shown to be O
�
n � m � , which is, of course, O

�
n �

if n is taken as sole parameter. This is in contrast to the algorithm in (Knuth
et al. 1977), which provides a complexity of O

�
n d m � . This seems a stronger

result if time complexity is the only matter of consideration. From a broader
perspective however, one finds that our approach allows a larger class of problems
to be solved.

For example, the substring problem can be generalized as follows. Given are
a finite set of input symbols Σ, an input string a1 ���
� an Σ � and a determinis-
tic language L � Σ � . To be decided is whether a1 �
��� an � uvw, some u � w Σ �
and v L, or in words, whether some substring of a1 ���
� an is in L. As before,
the problem can be translated into a membership problem of some string in a

An innovative FS concept 17

meta-deterministic language, and therefore our approach allows this problem to
be solved in O

�
n � time.

10 Relevance to NLP

We have introduced a new subclass of the context-free languages, the meta-deter-
ministic languages, which includes the deterministic languages properly. We have
given a recognition algorithm for this class, and have shown that it has a linear
time complexity. In effect, we have extended a well-known class of languages
that can be recognized in linear time, viz. the deterministic languages, to a much
broader class. Our results are nontrivial since this class contains inherently am-
biguous languages.

The ideas in this paper were not devised for the purpose of natural language
processing. However, one important linguistic observation follows from our work.
It has been claimed that natural languages cannot be processed in linear time be-
cause natural languages may be inherently ambiguous. The existence of meta-
deterministic languages, which may be inherently ambiguous but can still be pro-
cessed in linear time, shows us that this reasoning is invalid.

Concerning this observation, one must take into account that considerations
with respect to (inherent) ambiguity in computational linguistics differ from those
in formal language theory. A grammar for a natural language is usually written
for the purpose of attributing specific structures to sentences rather than merely
specifying the set of all allowable sentences. Consequently, ambiguity that can
be regarded as inherent arises when any linguistically plausible grammar for the
language attributes more than one structure to some sentence, whereas in formal
language theory, one would consider all grammars for a language. In other words,
some ambiguity that is considered to be inherent by computational linguists may
not be inherent in the mathematical sense. See (Gazdar and Pullum 1985) for
further discussion.

Next, we will look at two examples of ambiguity in English sentences and
outline how they may be approached using the techniques from this paper.

A sentence such as “We enjoy visiting relatives” is ambiguous in that “visiting
relatives” can be either interpreted as a noun phrase (relatives that are visiting)
or as a verb phrase (making visits to relatives). Assuming we have determinis-
tic languages L

�
X � , L

�
NP � and L

�
VP � that contain phrases such as “We enjoy”,

and noun phrases and verb phrases corresponding with “visiting relatives”, re-
spectively, sentences such as the one above are in L

�
X �q� � L � NP �#� L

�
VP �
� , a

meta-deterministic language. A prerequisite for this approach is that ambiguity
should not occur in a nested way. For example, if a similar kind of ambiguity oc-
curs nested inside noun phrases then the set of noun phrases cannot be described
by means of deterministic techniques, and the meta-deterministic approach fails.

For ambiguity related to attachment of prepositional phrases, consider the ex-
ample “I saw a man in the park with a telescope”. The unbounded number of

18 Mark-Jan Nederhof and Eberhard Bertsch

prepositional phrases that may occur after a phrase such as “I saw a man” can
be described by L

�
PP � � , where we assume that the language of all prepositional

phrases, L
�
PP � , is a deterministic language. This means that the ambiguity with

respect to attachment is circumvented by omitting from the description any repre-
sentation of attachment, and consequently, the parser will not perform attachment
at all. The same considerations with respect to nested ambiguity apply as for the
previous example.

As a last observation with regard to computational linguistics, we would like to
point out the parallels to existing work such as the multi-level finite state parsers
in (Abney 1996). Our work is in some sense a generalization of this work in that
the parsers on the lowest level deal with deterministic languages instead of with
regular languages. Further work on finite state syntactic analysis can be found
in (Pereira and Wright 1991; Voutilainen and Tapanainen 1993) and in various
papers in the present volume.

Acknowledgements

The first author has had fruitful discussions with Joop Leo about linear-time rec-
ognizability of subclasses of context-free languages. Aravind Joshi and Giorgio
Satta gave us invaluable help in preparing the final section of this paper.

Research by the first author is carried out within the framework of the Priority
Programme Language and Speech Technology (TST). The TST-Programme is
sponsored by NWO (Dutch Organization for Scientific Research).

References

Abney, S. 1996. Partial parsing via finite-state cascades. In J. Carroll (ed.), Workshop on
Robust Parsing, Eighth European Summer School in Logic, Language and Information,
pp. 8–15, Prague, Czech Republic, August.

Aho, A.V., Hopcroft, J.E., and Ullman, J.D. 1968. Time and tape complexity of pushdown
automaton languages. Information and Control, 13:186–206.

Berstel, J. 1979. Transductions and Context-Free Languages. B.G. Teubner, Stuttgart.
Bertsch, E. and Nederhof, M.J. 1995. Regular closure of deterministic languages. Bericht

Nr. 186, Fakultät für Mathematik, Ruhr-Universität Bochum, August. Accepted for
publication at SIAM Journal on Computing.

Bertsch, E. 1994. An asymptotically optimal algorithm for non-correcting LL(1) error
recovery. Bericht Nr. 176, Fakultät für Mathematik, Ruhr-Universität Bochum, April.

Billot, S. and Lang, B. 1989. The structure of shared forests in ambiguous parsing. In 27th
Annual Meeting of the Association for Computational Linguistics, Proceedings of the
Conference, pp. 143–151, Vancouver, British Columbia, Canada, June.

Gazdar, G. and Pullum, G.K. 1985. Computationally relevant properties of natural lan-
guages and their grammars. New Generation Computing, 3:273–306.

Hopcroft, J.E. and Ullman, J.D. 1979. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley.

An innovative FS concept 19

Knuth, D.E., Morris, Jr., J.H., and Pratt, V.R. 1977. Fast pattern matching in strings. SIAM
Journal on Computing, 6(2):323–350.

Lang, B. 1974. Deterministic techniques for efficient non-deterministic parsers. In Au-
tomata, Languages and Programming, 2nd Colloquium, Lecture Notes in Computer
Science, volume 14, pp. 255–269, Saarbrücken. Springer-Verlag.

Nederhof, M.J. and Bertsch, E. 1996. Linear-time suffix parsing for deterministic lan-
guages. Journal of the ACM, 43(3):524–554.

Nederhof, M.J. 1994. Linguistic Parsing and Program Transformations. PhD thesis, Uni-
versity of Nijmegen.

Pereira, F.C.N. and Wright, R.N. 1991. Finite-state approximation of phrase structure
grammars. In 29th Annual Meeting of the Association for Computational Linguistics,
Proceedings of the Conference, pp. 246–255, Berkeley, California, USA, June.

Voutilainen, A. and Tapanainen, P. 1993. Ambiguity resolution in a reductionistic parser.
In Sixth Conference of the European Chapter of the Association for Computational Lin-
guistics, Proceedings of the Conference, pp. 394–403, Utrecht, The Netherlands, April.

