Chapter 1

REGULAR APPROXIMATION OF CFLS:
A GRAMMATICAL VIEW

Mark-Jan Nederhof
DFKI
Stuhlsatzenhausweg 3
D-66123 Saarbriicken
Germany
nederhof@dfki.de

Abstract We show that for each context-free grammar a new grammar can be constructed
that generates a regular language. This construction differs from some existing
methods of approximation in that use of a pushdown automaton is avoided. This
allows better insight into how the generated language is affected.

Introduction

In existing literature, a number of methods have been proposed for approxi-
mating a context-free language (CFL) by means of a regular language. Some
of these methods were expressed in terms of 1) a construction of a pushdown
automaton from the grammar, where the language accepted by the automaton
is identical to the language generated by the grammar, and 2) an approximation
of that pushdown automaton, expressed in terms of a finite automaton.

Pushdown automata manipulate stacks, and the set of different stacks that
may need to be considered for processing of different input strings is potentially
infinite, and due to this fact, a pushdown automaton may accept a language that
is not regular. The approximation process now consists in reducing the infinite
set of stacks that are distinguished by the pushdown automaton to a finite
set, and thus a finite automaton results. As will be explained later, there are
roughly two ways of achieving this, the first leading to regular languages that
are subsets of the original context-free languages (Krauwer and des Tombe,
1981; Langendoen and Langsam, 1987; Pulman, 1986; Johnson, 1998), the

2

second leading instead to supersets (Baker, 1981; Bermudez and Schimpf,
1990; Pereira and Wright, 1997).

A disadvantage of this kind of approximation is that it is difficult to under-
stand or to influence how a language is changed in the process. This holds in
particular for methods of approximation that make use of a nontrivial construc-
tion of pushdown automata from grammars. An example is the construction of
LR recognizers (Sippu and Soisalon-Soininen, 1990). The structure of a gram-
mar is very different from the structure of the LR automaton constructed from
it. How subsequent manipulation of the LR automaton affects the language in
terms of the grammar is very difficult to see, and there seems to be no obvious
way to make adjustments to the approximation process.

In this communication we present an approximation that avoids the use of
pushdown automata altogether, and which can be summarized as follows. We
define a condition on context-free grammars that is a sufficient condition for
a grammar to generate a regular language. We then give a transformation that
turns an arbitrary grammar into another grammar that satisfies this condition.
This transformation is obviously not language-preserving; it adds strings to the
language generated by the original grammar, in such a way that the language
becomes regular.

The structure of this paper is as follows. In Section 1. we recall some
standard definitions from formal language theory. Section 2. investigates a
sufficient condition for a context-free grammar to generate a regular language.
An algorithm to transform a grammar such that this condition is satisfied is
given in Section 3..

As Section 4. shows, some aspects of our method are undecidable. A
refinement for obtaining more precise approximations is presented in Section 5..
Section 6. compares our method to other methods. Conclusions are found in
Section 7..

1. PRELIMINARIES

A context-free grammar G is a 4-tuple (X, N, P, S), where ¥ and N are two
finite disjoint sets of terminals and nonterminals, respectively, S € N is the
start symbol, and P is a finite set of rules. Each rule has the form A — o with
A € Nand a € V* where V denotes N U X. The relation — on N x V* is
extended to a relation on V* x V* as usual. The transitive and reflexive closure
of — is denoted by —*.

The language generated by G is given by the set {w € ¥* | § —* w}. By
definition, such a set is a context-free language. By reduction of a grammar
we mean the elimination from P of all rules A — ~ such that S —* aAB —
ayB —* w does not hold forany , 3 € V* and w € ¥*.

Regular Approximation of CFLs: A Grammatical View 3

S—(Sx8)
S—>(S+8)
S—0

@ (b)

Figure 1.1 (a) two spines in a parse tree, (b) the grammar symbols to the left and right of a
spine immediately dominated by nodes on the spine.

We generally use symbols A4, B, C, ... to range over N, symbols a, b, c, . ..
to range over X, symbols X, Y, Z to range over V, symbols «, 3,7, . . . to range
over V* and symbols v, w, z, . . . to range over X* We write ¢ to denote the
empty string.

A rule of the form A — B is called a unit rule, a rule of the form A — € is
called an epsilon rule. A grammar is called cyclic if A —* A, for some A.

A (nondeterministic) finite automaton F is a 5-tuple (K, X, A, s, F), where
K is afinite set of states, of which s is the initial state and those in F* C K are
the final states, X is the input alphabet, and the transition relation A is a finite
subset of K x ¥* x K.

We define a configuration to be an element of K x ¥*. We define the
binary relation - between configurations as: (g,vw) F (¢’,w) if and only if
(g,v,q") € A. The transitive and reflexive closure of |- is denoted by *.

Some input v is recognized if (s, v) F* (g, €), forsome g € F. The language
accepted by F is defined to be the set of all strings v that are recognized.
By definition, a language accepted by a finite automaton is called a regular
language.

2. THE STRUCTURE OF PARSE TREES

We define a spine in a parse tree to be a path that runs from the root down
to some leaf. Figure 1.1 (a) indicates two spines in a parse tree for the string
((0 4+ 0) % 0), according to a simple grammar.

Our main interest in spines lies in the sequences of grammar symbols at
nodes bordering on spines. Figure 1.1 (b) gives an example: to the left of the
spine we find the sequence “((” and to the right we find “+.S5) % .S)”. The way
that such pairs of sequences may relate to each other determines the strength of

g S — S}
! N
S& — Ss
St Jr —
|S Ss—)a SS
— — — —
§—aSa s S Ss Ss— b Ss
S a a S a s €
S —s ¢ a S S — —
T /<‘_ _'>\ Ss— Ss a
— —
b S b b Sg Sg b Se— Ss b
| | | iy
€ € € Sg— €
(a) (b)

Figure 1.2 Parse trees for a palindrome: (a) original grammar, (b) transformed grammar
(Section 3.).

context-free grammars and, as we will see later, by restricting this relationship
we may reduce the generative power of context-free grammars to the regular
languages.

A simpler example is the set of parse trees such as the one in Figure 1.2 (),
for a 3-line grammar of palindromes. It is intuitively clear that the language
is not regular: The grammar symbols to the left of the spine from the root
to e “communicate” with those to the right of the spine. More precisely, the
prefix of the input up to the point where it meets the final node ¢ of the spine
determines the suffix after that point, in a way that an unbounded number of
symbols from the prefix need to be taken into account.

A formal explanation for why the grammar may not generate a regular
language relies on the following definition, due to (Chomsky, 1959b):

Definition 1 A grammar is self-embedding if there is some A € N, such that
A —* aAB, for some a # e and 8 # e.

In order to avoid the somewhat unfortunate term nonself-embedding (or
noncenter-embedding, as in (Langendoen, 1975)) we define a strongly reg-
ular grammar to be a grammar that is not self-embedding. Strong regularity
informally means that when a section of a spine in a parse tree repeats itself,
then either no grammar symbols occur to the left of that section of the spine,
or no grammar symbols occur to the right. This prevents the “unbounded com-
munication” between the two sides of the spine exemplified by the palindrome
grammar.

Obviously, right linear and left linear grammars (as known from standard
literature such as (Hopcroft and Ullman, 1979)) are strongly regular. That right

Regular Approximation of CFLs: A Grammatical View 5

linear and left linear grammars generate regular languages is easy to show.
That strongly regular grammars also generate regular languages will be proved
shortly.
First, for an arbitrary grammar, we define the set of recursive nonterminals
as:
N ={A € N |3a,B[A =* aAB]}

We determine the partition A/ of N consisting of subsets N1, Na, ..., N, for
some n > 0, of mutually recursive nonterminals:

N ={Ny,N,...,N,}
NiUNU...UN, =N
Vi[N; # 0] and Vi, j[i # j = N; N N; = (]
J[A e N;ABe€N;] & 3Foa,B1,02,02[A —=* a1BB1 A B =* azABs],
forall A,Be N

We now define the function recursive from A/ to the set {left, right, self, cyclic}.
Forl<i<n:

recursive(N;) = left, if -—LeftGenerating(N;) A
RightGenerating(V;)

= right, f LeftGenerating(lV; A
—RightGenerating(V;)

= self, if LeftGenerating(V;) A
RightGenerating(N;)

= cyclic, if -—LeftGenerating(N;) A
—-RightGenerating(N;)

where

LeftGenerating(N;) = 3(A — aBB) € P[A€ N;AB € N; N« # €
RightGenerating(N;) = 3(A - aBf) € P[A€ N;AB € N; A\ # €]

When recursive(N;) = left, N; consists of only left-recursive nontermi-
nals, which does not mean it cannot also contain right-recursive nonterminals,
but in that case right recursion amounts to application of unit rules. When
recursive(N;) = cyclic, it is only such unit rules that take part in the recur-
sion.

That recursive(N;) = self, for some 4, is a sufficient and necessary condi-
tion for the grammar to be self-embedding. We only prove this in one direction:
Suppose we have two rules Ay — a1B161, A1,B1 € N;, and As — as By 3o,
Ay, Bs € N;,suchthatay # eand B2 # €. Thismeansthat A; — a1 B161 —=*
a1 AsB1f1 — araiasBefafifB1 —* arajasab A1 ByB26161, for some

6

af, B, ab, B85, making use of the assumption that B; and Az, and then Bs and
A, are in the same subset N; of mutually recursive nonterminals. In the final
sentential form we have ajajasah # € and 85828161 # €, and therefore the
grammar is self-embedding.

A set N; such that recursive(N;) = self thus provides an isolated aspect of
the grammar that causes self-embedding, and therefore making the grammar
strongly regular will depend on a solution for how to transform the part of the
grammar in which nonterminals from N; occur.

We now prove that a grammar that is strongly regular (or in other words,
for all 4, recursive(N;) € {left, right, cyclic}) generates a regular language.
Our proof differs from a proof of the same fact in (Chomsky, 1959a) in that
it is fully constructive: Figure 1.3 presents an algorithm for creating a finite
automaton that accepts the language generated by the grammar.

The process is initiated at the start symbol, and from there the process
descends the grammar in all ways until terminals are encountered, and then
transitions are created labelled with those terminals. Descending the grammar
is straightforward in the case of rules of which the left-hand side is not a
recursive nonterminal: the groups of transitions found recursively for members
in the right-hand side will be connected. In the case of recursive nonterminals,
the process depends on whether the nonterminals in the corresponding set from
N are mutually left-recursive or right-recursive; if they are both, which means
they are cyclic, then either subprocess can be applied; in the code in Figure 1.3
cyclic and right-recursive subsets N; are treated uniformly.

We discuss the case that the nonterminals are left-recursive. (The converse
case is left to the imagination of the reader.) One new state is created for
each nonterminal in the set. The transitions that are created for terminals
and nonterminals not in N; are connected in a way that is reminiscent of
the construction of left-corner parsers (Rosenkrantz and Lewis I, 1970), and
specifically of one construction that focuses on groups of mutually recursive
nonterminals (Nederhof, 1994a, Section 5.8).

An example is given in Figure 1.4. Four states have been labelled according
to the names they are given in procedure make_fa. There are two states that
are labelled gg. This can be explained by the fact that nonterminal B can be
reached by descending the grammar from S in two essentially distinct ways.

3. APPROXIMATING A CONTEXT-FREE
LANGUAGE

Now that we know what makes a context-free grammar violate a sufficient
condition for the generated language to be regular, we have a good starting point
to investigate how we should change a grammar in order to obtain a regular

Regular Approximation of CFLs: A Grammatical View 7

let K =0, A =0, s =fresh_state, f = fresh_state, F = {f};
make_fa(s, S, f).

procedure make_fa(qgo, ., q1):
ifa=c¢
thenlet A= AU {(qo, €, q1)}
elseifa = a,somea € ¥
thenlet A = AU {(g0,2,q1)}
elseifa = X3,some X € V, 8 € V*such that |3| > 0
then let ¢ = fresh_state;
make_fa(qo, X, q);
make—fa(Qa /87 ql)
else let A = a; (* a must consist of a single nonterminal *)
if A € N;, some ¢
then for each B € N; do let gg = fresh_state end;
if recursive(N;) = left
then for each (C — X; ... X,,) € P such that
CeN;ANXy,...,.Xm & N;
do make_fa(qo, X1 ... Xm,qc)
end;
for each (C — DX;...X,,) € P such that
C,De N;ANX1y...,.Xm & N;
do make_fa(¢gp, X1 - .. Xm,qc)
end;
let A=AU{(ga,€6q1)}
else “the converse of the then-part”
(* recursive(V;) € {right, cyclic} *)
end
else for each (A —) € P do make_fa(qgo, 3,¢1) end
(* A is not recursive *)
end
end
end.

procedure fresh_state():
create some fresh object g;
let K = K U{q};
return q

end.

Figure 1.3 Mapping from a strongly regular grammar G = (X, N, P, S) into an equivalent
finite automaton F = (K, 3, A, s, F).

S = Aa
A - SB j\V/ = E%A}VB}}
= 1,4V2
A — Bb N1 = {8, A}
B — Bc N, = {B}
B — d
c (® c

Figure 1.4 Application of the code from Figure 1.3 on a small grammar.

language. The intuition is that the “unbounded communication” between the
left and right sides of spines is broken.

We concentrate on the sets N; with recursive(N;) = self. For each set
separately, we apply the transformation in Figure 1.5. Thereafter the grammar
will be strongly regular. We will explain the transformation by means of two
examples.

We first discuss the special case that each nonterminal can lead to at most one
recursive call of itself, which holds for linear context-free grammars (Hopcroft
and Ullman, 1979). Consider the grammar of palindromes in the left half of
Figure 1.2. The approximation algorithm leads to the grammar in the right
half. Figure 1.2 (b) shows the effect on the structure of parse trees. Note that

(_
the left sides of former spines are treated by the new nonterminal Sg and the
_)

right sides by the new nonterminal Ss.

The general case is more complicated. A nonterminal A may lead to several
recursive occurrences: A —* aABA~. As before, our approach is to approx-
imate the language by separating the left and right sides of spines, but in this
case, several spines in a single parse tree may need to be taken care of at once.

As a presentation of this case in a pictorial way, Figure 1.6 (a) suggests
a part of a parse tree in which all (labels of the) nodes belong to the same
set N;, where recursive(N;) = self. Other nodes in the direct vicinity of the
depicted part of the parse tree we assume not to be in IV;; the triangles A, for
example, denote a mother node in N; and a number of daughter nodes not in
N;. The dotted lines labelled p1, p3, p5, p7 represent paths along nodes in N;
such that the nodes to the left of the visited nodes are not in IV;. In the case of
p2, p4, pb, p8 the nodes to the right of the visited nodes are not in N;.

Regular Approximation of CFLs: A Grammatical View 9

Assume the grammar is G = (£, N, P, S). The following is to be performed
for some fixed set N; € N such that recursive(NV;) = self.

— —
1. Add the following nonterminals to N: Al,, AL, Ap and Ap for all pairs
of A,B € N;.

2. Add the following rules to P, forall A, B,C, D, E € N;:
= A AL ;

-
" Ag — Ac Xl...Xme?, forall (C - X;...X,,) € P, with
Xl,...,XmﬁNi;

_>
= AL - CaXy...X,EL forall (D —» aCX; ... X, EB) € P,
with X1,...,Xm ¢ N;;

1 —
L AB —By;

— —
s Ag— X;...X,, Cp, for all (A — XleCB) € P, with
Xl,...,XmﬁNi;

F
u AA—> €,

— —
m Ap— Cp X1...Xp, forall (A - aCX;...X,,) € P, with
Xl,...,Xm¢Ni;

_)
m Aj— e
3. Remove from P the old rules of the form A — «, where A € N;.

4. Reduce the grammar.

Figure 1.5 Approximation by transforming the grammar, given a set IV;.

The effect of our transformation on the structure of the parse tree is suggested
in Figure 1.6 (b). We see that the left and right sides of spines (e.g. p1 and p2)
are disconnected, in the same way as “unbounded communication” between
the two sides of spines was broken in our earlier example of the palindrome
grammar.

Consider now the following grammar for mathematical expressions:

S — AxB
A —- (A+B)

10

Figure 1.6 The general effect of the transformation on the structure of parse trees.

[A]
b

STIC IS
111

We have N = {A, B}, N' = {N1}, N1 = {4, B}, and recursive(N;) = self.
After applying the approximation algorithm to N1 we obtain the grammar in
Figure 1.7. We emphasize that the transformed grammar in the figure has
already been reduced.

If we compare this example to the general picture in Figure 1.6 (b), we

i
conclude that a nonterminal such as B4 derives paths such as p1, p3, p5 or p7,
where B was the top label at the path in the original parse tree and A occurred

Regular Approximation of CFLs: A Grammatical View 11

— — — — —
S—AxB A4 —Ax + Bl Aa—(Aa As—Ba)
A AT 1 — + — — — —

— Ay B,—Ap + B, By—[Aa Ap— Bp)
B— B! i — " <« — —
N B . AB—>AA + Bp Ajp—e By—Ay]

— — — —
Aﬁ‘“‘k‘ “Af By —Ap + B Bp—e Bp— Ap]
_)
Bf—’%* aAf AL = Ay Ay —se
— —

BB_>Bi_A aAB Bj—)AB BB—)C
T 4 —

Bl Bp b Bt TS
BB %8B By 4 Bp

Figure 1.7 Transformed grammar, resulting from application of Figure 1.5.

at the bottom. A similar fact holds for nonterminals such as]§,>4. Nonterminals
such as le and Bj indicate that the root of the complete subtree was labelled
A, and that the last node of the tree that was treated is labelled B; in the case of
le that node is at the top of a path such as p1, p3, p5 or p7 in the original tree,

in the case of Bj that node is at the bottom of a path such as p2, p4, p6 or p8.

4. LIMITATIONS

It is undecidable whether the language generated by a context-free grammar
is regular (Harrison, 1978). Consequently, the condition of strong regularity,
which is decidable and is a sufficient condition for the language to be regular,
cannot also be a necessary condition. This is demonstrated by the following
grammar:!

S - aA| Ba|C
A - aA|C
B —- Ba|C
C - aCalc

This (non-ambiguous) grammar generates the regular language a*ca*. Yet it
is not strongly regular, due to the cycle pertaining to the rule C — a C a.
Fortunately, our algorithm transforms this grammar into a strongly regular one
which generates the same language a*ca*.

In some cases, a grammar that is not strongly regular but that generates a reg-
ular language is transformed into one that generates a strictly larger language.
This cannot be prevented however by any method of superset approximation,
since transforming a context-free grammar generating a regular language into a
finite automaton accepting the same language is an unsolvable problem (Ullian,
1967).

12

A simple example where our method has this undesirable behaviour is the
following:

S — aSa | aSb | bSa | bSb | €

This grammar generates the regular language of all strings over {a, b} of even
length. Our approximation however results in the exact same grammar as in
the example of palindromes. This grammar generates the regular language of
all strings over {a, b} — not only those of even length.?

If we represent context-free languages by means of pushdown automata
(see also Section 6.), we can define a subclass for which regularity is decid-
able, namely those that allow a deterministic pushdown automaton. If such
a deterministic language is regular, we can furthermore construct an equiva-
lent deterministic finite automaton (Stearns, 1967). It turns out that even for
this restricted class of context-free languages, the construction of equivalent
finite automata is quite complex: The number of states of the (deterministic)
finite automata may be a double exponential function in the size of the original
deterministic pushdown automata (Meyer and Fischer, 1971; Valiant, 1975).

For arbitrary context-free grammars that generate regular languages, no
recursive function in the size of grammars exists that provides an upper bound
to the number of states of equivalent finite automata (Meyer and Fischer, 1971).

5. REFINEMENT

Our approximation algorithm is such that the two sides of spines are dis-
connected for all nonterminals that are involved in self-embedding (i.e. those
in some fixed N; with recursive(N;) = self). One can however retain a finite
amount of self-embedding in a precise way by unfolding 5 levels of applications
of rules before the approximation algorithm is applied. In the unfolded rules,
recursive nonterminals are replaced by new non-recursive nonterminals, so that
in those j levels the precision remains unaffected.

One way of achieving this is the following. For each nonterminal A € N; we
introduce j fresh nonterminals A[1],..., A[j], and foreach A — X;--- X,
in Psuchthat A € N;,and hsuchthat1 < h < j, weadd A[h] — X{--- X/,
to P, where

X, = Xph+1,ifXr e N;AR<j
= Xy, otherwise

Further, we replace all rules A — X;---X,, such that A ¢ N; by A —
X1{---X] ., where

X]’c = Xk[l], if X, € N;
= X, otherwise

Regular Approximation of CFLs: A Grammatical View 13

If the start symbol S was in INV;, we let S[1] be the new start symbol. Note that
the transformation preserves the language.
If we take j = 3, the palindrome grammar becomes:

S[1] — aS[2la | bS[2]b | €
S[2] — aS[3la | bS[3b]| e
S[B] — aSa|bSb|e

S — aSa|bSb|e

After applying the approximation algorithm, all generated strings up to length 6
are palindromes. Only generated strings longer than 6 may not be palindromes:
these are of the form wvv'w?, for some w € {a,b}? andv,v’ € {a,b}*, where
w® indicates the mirror image of w. Thus the outer 3 symbols left and right do
match, but not the innermost symbols in both “halves”.

In general, by choosing j high enough we can obtain approximations that
are language-preserving up to a certain string length, provided however the
grammar is not cyclic. Apart from actual cyclic grammars, the above grammar
transformation becomes less effective when the original grammar contains
many unit rules or epsilon rules, which can be explained by the fact that such
rules do not contribute to the length of the generated string. This problem can
be overcome by eliminating such rules from the grammar before applying the
above transformation.

The transformation above in effect decorates nodes in the parse tree with
numbers up to j indicating the distance to the nearest ancestor node not in IV;.
The second refinement we discuss has the effect of indicating the distance up
to j to the furthest descendent not in V;.

For this refinement, we again introduce 5 fresh nonterminals A[1], ..., A[/]
for each A € N;. If the start symbol S is in N;, we first introduce a new
nonterminal S, which is to become the new start symbol and we add the rule
St — 8. Then, each A — X --- X, in P is replaced by a collection of other
rules, which are created as follows. We determine the (possibly empty) list
k1i,...,kp of ascending indices of members that are in N;: {k1,...,kp} =
{k|1<k<mAX,eN;}andk; < ... < kp. For each list of p numbers
ni,...,np € {1,...,4,7 + 1} we create the rule A’ — X7 --- X/, where

Xy = Xg[ng], if Xp e NiAng <j
= Xy, otherwise
A" = Alh+1],if Ae N; Ah < j, where h = max ny
. 1<k<p
= A, otherwise
We assume that A evaluates to 0 if p = 0. Note that j + 1 is an auxiliary
number which does not show up in the transformed grammar; it represents the

case that the distance to the furthest descendent not in N; is more than j. This
transformation also preserves the language.

14

For the running example, with j = 3, we obtain:
St — S| S[8] | S12] | S

S — aSa|bSb| aS[3]a| bS[3]b
SB] — aS[2la | bS[2]b
S[2] — aS[l]a | bS[1]b
S[1] — €

Approximation now results in palindromes up to length 6, but longer strings
have the form vww®v’, for some w € {a,b}? and v,v' € {a,b}*, where it
is the innermost, not the outermost, part that still has the characteristics of
palindromes.

6. OTHER METHODS OF APPROXIMATION

In existing literature, several methods of regular approximation of context-
free languages are described in terms of the approximation of pushdown au-
tomata. A pushdown automaton A is a 5-tuple (@, X, A, I, F'), where @ is a
finite set of stack symbols, of which I is the initial stack symbol and F' is the
final stack symbol, X is the input alphabet, and the transition relation A is a
finite subset of Q* x ¥* x Q™.

A configuration here is an element of @* x ¥*. The first components of
such elements are called stacks. We define the binary relation + between
configurations as: (af,vw) F (ay,w) if and only if (3,v,7) € A. Some
input v is recognized if (I,v) H* (aF,€), for some a € Q*.

The language accepted by A is defined to be the set of all strings v that are
recognized. A language is accepted by a pushdown automaton if and only if it
is a context-free language. That every context-free language is accepted by a
pushdown automaton is witnessed by a number of constructions of pushdown
automata from context-free grammars. Let us call such a construction a parsing
strategy; see (Nederhof, 1994b) for a family of parsing strategies.

In general, there is an infinite set of stacks « that satisfy (I,v) F* (a,€).
Irrespective of the parsing strategy, we can define approximations in terms of
operations that in effect reduce the infinite set of stacks that are distinguished
by the pushdown automaton to a finite set, and thus lead to a finite automaton.

One such operation is simply a restriction of the relation - to a smaller
relation 4 that disallows the stack height to exceed a fixed number d > 1.
Formally, (o, vw) k4 (8, w) if and only if (e, vw) + (8,w) and |a| < d and
|3 < d. One can now construct a finite automaton where the set K of states is
defined to be the set of stacks « that satisfy (I, v) I} («, €). The initial state is
I, and the final states are stacks from K of the form o F. The transition relation
A is defined to be (a, v, 8) € A ifand only if (a,v) b4 (8, €).

This kind of subset approximation is proposed in (Krauwer and des Tombe,
1981; Langendoen and Langsam, 1987; Pulman, 1986; Johnson, 1998) in

Regular Approximation of CFLs: A Grammatical View 15

combination with the (slightly modified) left-corner parsing strategy. The
motivation for this strategy is that the approximation is then exact when the
grammar is strongly regular, provided that d is chosen high enough. However,
any other parsing strategy can be used as well, which may lead to different
approximating languages.

Some theoretical limitations of subset approximation have been investigated
by (Ullian, 1967): Given a context-free language, it is undecidable whether
an infinite regular subset exists; yet, given that it exists, it can be computed.
Note that for practical purposes one is interested in determining a “large”
regular subset, not just any infinite subset of a context-free language as in the
theorem from (Ullian, 1967). Experiments reported in (Nederhof, 2000) show
that computing subset approximations may be very expensive for practical
grammars.

Superset approximations result if we define a mapping f from the infinite
set of stacks to a finite domain. We then construct a finite automaton of which
K, the set of states, consists of the elements from that finite domain of the
form f(a) such that « satisfies (I,v) H* (a,€), for some v. The initial state
is defined to be f(I) and the final states are the elements from K of the form
f(aF), for stacks aF satisfying (I,v) * (aF),¢€), for some v. The transition
relation A of the finite automaton is defined to be the least relation such that
(I, w) F* (o, €) and (,v) F (B,) implies (f(a), v, £(8)) € A.

As an example, let us consider a top-down parsing strategy, described as
follows. We define @ to be the set of “dotted” rules of the form [A — a e 3],
where (A — af) in P. Let us further assume, without loss of generality, that
there is only one occurrence of start symbol S, which is found in the (unique)
rule of the form S — o. We thenchoose I =[S — eog|and F =[S — o).
The transition relation A is defined by the following:

" ([A—>aeBf, ¢ [A—> aeBf|[B—eq]) €A,
forall (A — aBg),(B — ~) € P;

» ([A—>aeafl, a, [A— aaef]) €A,
forall (A — aaf) € P;

" ([A—> aeBf]|[B— e, ¢, [A—aBef]) €A,
forall (A — aBpg),(B — v) € P.

If we define f to map each stack to its top element (i.e. f(ag) = g, for all
a € @* and g € Q), then we obtain an approximation that is very close to our
approximation from Section 3.; in fact, the two approximations are identical if
all nonterminals belong to a single N such that recursive(Ny) = self. This
becomes even more clear if the approximation from Section 3. is expressed
in a form inspired by recursive transition networks, as in (Nederhof, 2000).

16

The approximation above also concurs with the simplified approximation from
(Grimley Evans, 1997) (omitting conditions 7 and 8 therein).

The same mapping f, but in combination with a different parsing strategy,
viz. LR parsing, underlies an approximation in (Baker, 1981). By generalizing
f to yield the top-most ¢ elements of the stack (or the entire stack if it is
less than ¢ elements high), given some fixed parameter ¢, the approximation
in (Bermudez and Schimpf, 1990) is obtained, also in combination with LR
parsing.

Another approximation based on LR parsing is given in (Pereira and Wright,
1997), and is obtained by defining f to map each stack to another stack in
which no stack symbol occurs more than once. Given a stack «, the stack f(c)
is reached by iteratively replacing substacks of the form ¢3¢ by ¢; in case there
are several such substacks, one chooses one among them in a canonical way to
ensure f is uniquely defined.

The main purpose of this paper is to clarify what happens during regular
approximation of context-free languages. Our grammar-based method rep-
resented by Figure 1.5 can be seen as the simplest approach to remove self-
embedding leaving other parts of the grammar unaffected, and as we have
shown, removing self-embedding is sufficient for obtaining a regular language.

Given its simplicity, it is not surprising that more sophisticated methods,
such as those based on the LR parsing strategy, produce strictly more precise
approximations, i.e. regular languages that are smaller, in terms of language
inclusion C. However, our experiments have shown that such sophistication
sometimes deteriorates rather than improves practical usefulness.

For example, the method from (Baker, 1981) in many cases yields the same
regular language as our method, yet the intermediate results in the approxima-
tion are much larger, which can be argued theoretically but is also confirmed by
experiments reported in (Nederhof, 2000). The “sophistication” of LR parsing
is here merely a source of needless inefficiency.

The high costs involved in applying the LR parsing strategy are even more
apparent in the case of the method from (Pereira and Wright, 1997): First, the
construction of an LR automaton, of which the size is exponential in the size
of the grammar, may be a very expensive task in practice (Nederhof and Satta,
1996). This is however only a fraction of the effort needed for considering all
stacks in which stack symbols occur at most once, i.e. the stacks obtained by
applying f, which is in turn exponential in the size of the LR automaton.3

By contrast, the complexity of our approximation algorithm (Figure 1.5) is
polynomial. The only exponential behaviour may come from the subsequent
construction of the finite automaton (Figure 1.3), when the grammar is de-
scended in all ways, a source of exponential behaviour which is also part of
the methods based on LR parsing. There is a representation of the automata

Regular Approximation of CFLs: A Grammatical View 17

however that also avoids this exponential behaviour (Nederhof, 2000; Mohri
and Pereira, 1998).

That the grammar-based method in general produces less precise approxi-
mations may seem a weakness: ad hoc refinements such as those discussed
in Section 5. may be needed to increase precision. For example, consider the
grammar in Section 9 of (Church and Patil, 1982) and the 4-line grammar of
noun phrases from (Pereira and Wright, 1997). Neither of these grammars are
strongly regular, yet they generate regular languages. For the first grammar, the
method from (Pereira and Wright, 1997) and the grammar-based method give
the same result. But for the second grammar, the two methods give the same
result only provided the second refinement from Section 5. is incorporated into
our grammar-based method, with j = 1.

Our viewpoint is however that the methods relying on LR parsing also
incorporate ad hoc mechanisms of obtaining approximations that are more
precise than what is minimally needed to obtain a regular language, and that
these are outside of the control of the user.

A case in point is the grammar of palindromes. In Section 5. we demon-
strated how precision for our method can be improved in a controlled manner.
However, the method from (Pereira and Wright, 1997) forces a result upon us
which is given by e U (a{a,b}*a — a(ba)*) U (b{a,b}*b — b(ab)*); in other
words, just the left-most and right-most symbols are matched, but alternating
series of a’s and b’s are excluded. This strange approximation is reached due
to some intricate aspect of the structure of the LR automaton, and there is no
reason to consider it as more natural or desirable than any other approximation,
and although this method allows additional refinement as well, as shown by
(Rood, 1996), the nature of such refinement may be that even more of the same
kind of idiosyncrasies is introduced.

We now consider the method of approximation from (Grimley Evans, 1997),
which is rephrased as follows. For each rule A — X;--- X,, we make a
finite automaton with states qo, . .., g, and transitions (g;—1, X;, ¢;), where
1 <4 < m. These automata are then joined: Each transition (g;—1, B, gi),
where B is a nonterminal, is replaced by a set of e-transitions from ¢; 1 to
the “left-most” states for rules with left-hand side B, and conversely, a set of
e-transitions from the “right-most” states for those rules to g;.

This essentially replaces recursion by e-transitions, which leads to a crude
approximation (which is identical to the method above based on the top-down
parsing strategy). An additional mechanism is now introduced that ensures
that the list of visits to the states qo, - - - , g, belonging to a certain rule satisfies
some reasonable criteria: a visit to ¢;, with 0 < i < m, should be followed
by a visit to g;11 or go. The latter option amounts to a nested incarnation of
the rule. Similarly there is a condition for what should precede a visit to g;,
with 0 < 7 < m. Since only pairs of consecutive visits to states from the set

18

{qo, - - -, gm } are considered, finite-state techniques suffice to implement such
conditions.

The emphasis on treating rules individually has the consequence that the
order of terminals in a string can become scrambled even when the approxi-
mation is still exact with respect to the number of occurrences of terminals.
As in the case of the method from (Pereira and Wright, 1997), the resulting
approximations are often surprising. E.g. for the palindrome grammar, the
language we obtain is € U a%a* U b%b* U (Z*aX*bE* U T*bX*aX*)?, where
¥ ={a,b}.

As reported in (Grimley Evans, 1997) and confirmed by the empirical data
in (Nederhof, 2000), the resulting finite automata may be quite large, even
for small grammars. The explanation is that conceptually a state of the finite
automaton indicates for each grammar rule individually how far recognition
of the right-hand side has progressed, which leads to exponential behaviour in
the size of the grammar. It seems however that the method always results in
approximations that are more precise than our grammar-based method without
the refinements from Section 5..

Another way of obtaining a regular approximation of a grammar is to retain
only the information about allowable pairs (or triples, etc.) of adjacent parts
of speech (cf. bigrams, trigrams, etc.). This simple approach is proposed in
(Herz and Rimon, 1991; Rimon and Herz, 1991), and is reported to be effective
for the purpose of word tagging in Hebrew. (For extension to probabilistic
formalisms, see (Stolcke and Segal, 1994).)

7. CONCLUSIONS

Comparing the respective superset approximations discussed above, we see
that an important distinguishing property of our grammar-based method is
that the structure of the context-free grammar is retained as long as possible
as much as possible. This has two advantages. First, the remnants of the
original structure present in the transformed grammar can be incorporated into
the construction of the automaton, in such a way that the automaton (a finite
transducer) produces output that can be used to build parse trees according to
the original grammar. This has been shown in (Nederhof, 1998).

Secondly, the approximation process itself can be monitored: The author of
a grammar can still see the structure of the old grammar in the new strongly
regular grammar, and can in this way observe what kind of consequences the
approximation has on the generated language.

Further comparison of different methods of approximation is provided in
(Nederhof, 2000), which concentrates on two questions. First, what happens
when a context-free grammar grows in size? What is then the increase of the
size of the obtained minimal deterministic automaton? Second, how “precise”

Regular Approximation of CFLs: A Grammatical View 19

are the approximations? That is, how much larger than the original context-
free language is the language obtained by a superset approximation, and how
much smaller is the language obtained by a subset approximation? An attempt
is made to answer these questions by making measurements on a practical
grammar for German and a corpus of spoken language.

Acknowledgments

The main part of this research was carried out within the framework of the Priority Programme
Language and Speech Technology (TST), while the author was employed at the University of
Groningen; the TST-Programme is sponsored by NWO (Dutch Organization for Scientific
Research). Further support was obtained from the German Research Foundation (DFG), under
grant Be1953/1-1, and from AT&T Labs.

Notes

1. We use an abbreviated notation for sets of context-free rules. Vertical lines separate respective
right-hand sides of rules with identical left-hand sides.

2. The method from (Pereira and Wright, 1997) does a little better: of the strings of odd length it
excludes those of length 1; yet it does allow all strings of length 3, 5, The alternative method from
(Grimley Evans, 1997) excludes a, b, aba and bab, but allows all other strings of odd length. The methods
are compared more closely in Section 6..

3. Asuggestive example of the difficulty of applying the approximation from (Pereira and Wright, 1997)
is provided by a grammar describing part of the Java programming language. Although two independent
implementations we made have crashed before finishing the task, we can make a reasonable estimate of
the costs that would be involved in constructing the (nondeterministic) finite automaton. The grammar has
28 nonterminals and 57 rules. The LR(0) characteristic machine has 120 states and 490 transitions. The
number of stacks without multiple occurrences of states can be estimated as follows. We order the states as
q0, - - - ,q119, and assume that from each gz, with 0 < k& < 115, there are transitions t0 gx+1, qk+2, 9k+3
and gg4; note that 4 x 116 = 464, which is not far from 490, and therefore this scenario may be similar
to the actual situation. One stack that can be constructed is gogags - - - g116, but at least 29 times, another
choice can be made which of 4 elements to push, starting from stack go, which results in different stacks.
Thus there may be more than 429 ~ 2.9 % 1017 different stacks and as many states in the finite automaton!

References

Baker, T. (1981). Extending lookahead for LR parsers. Journal of Computer
and System Sciences, 22:243-259.

Bermudez, M. and Schimpf, K. (1990). Practical arbitrary lookahead LR pars-
ing. Journal of Computer and System Sciences, 41:230-250.

Chomsky, N. (1959a). A note on phrase structure grammars. Information and
Control, 2:393-395.

Chomsky, N. (1959b). On certain formal properties of grammars. Information
and Control, 2:137-167.

Church, K. and Patil, R. (1982). Coping with syntactic ambiguity or how to
put the block in the box on the table. American Journal of Computational
Linguistics, 8:139-149.

Grimley Evans, E. (1997). Approximating context-free grammars with a finite-
state calculus. In 35th Annual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, pages 452-459, Madrid, Spain.

Harrison, M. (1978). Introduction to Formal Language Theory. Addison-
Wesley.

Herz, J. and Rimon, M. (1991). Local syntactic constraints. In Proc. of the
Second International Workshop on Parsing Technologies, pages 200209,
Cancun, Mexico.

Hopcroft, J. and Ullman, J. (1979). Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley.

Johnson, M. (1998). Finite-state approximation of constraint-based grammars
using left-corner grammar transforms. In 36th Annual Meeting of the Asso-
ciation for Computational Linguistics and 17th International Conference on
Computational Linguistics, volume 1, pages 619-623, Montreal, Quebec,
Canada.

Krauwer, S. and des Tombe, L. (1981). Transducers and grammars as theories
of language. Theoretical Linguistics, 8:173-202.

21

22

Langendoen, D. (1975). Finite-state parsing of phrase-structure languages and
the status of readjustment rules in grammar. Linguistic Inquiry, 6(4):533—
554.

Langendoen, D. and Langsam, Y. (1987). On the design of finite transducers for
parsing phrase-structure languages. In Manaster-Ramer, A., editor, Mathe-
matics of Language, pages 191-235. John Benjamins Publishing Company,
Amsterdam.

Meyer, A. and Fischer, M. (1971). Economy of description by automata, gram-
mars, and formal systems. In IEEE Conference Record of the 12th Annual
Symposium on Switching and Automata Theory, pages 188-191.

Mohri, M. and Pereira, F. (1998). Dynamic compilation of weighted context-
free grammars. In 36th Annual Meeting of the Association for Computational
Linguistics and 17th International Conference on Computational Linguis-
tics, volume 2, pages 891-897, Montreal, Quebec, Canada.

Nederhof, M.J. (1994a). Linguistic Parsing and Program Transformations. PhD
thesis, University of Nijmegen.

Nederhof, M.-J. (1994b). An optimal tabular parsing algorithm. In 32nd Annual
Meeting of the Association for Computational Linguistics, Proceedings of
the Conference, pages 117-124, Las Cruces, New Mexico, USA.

Nederhof, M.-J. (1998). Context-free parsing through regular approximation.
In Proceedings of the International Workshop on Finite State Methods in
Natural Language Processing, pages 13-24, Ankara, Turkey.

Nederhof, M.-J. (2000). Practical experiments with regular approximation of
context-free languages. Computational Linguistics, 26(1). In press.

Nederhof, M.-J. and Satta, G. (1996). Efficient tabular LR parsing. In 34th An-
nual Meeting of the Association for Computational Linguistics, Proceedings
of the Conference, pages 239-246, Santa Cruz, California, USA.

Pereira, F. and Wright, R. (1997). Finite-state approximation of phrase-structure
grammars. In Roche, E. and Schabes, Y., editors, Finite-State Language
Processing, pages 149-173. MIT Press.

Pulman, S. (1986). Grammars, parsers, and memory limitations. Language and
Cognitive Processes, 1(3):197-225.

Rimon, M. and Herz, J. (1991). The recognition capacity of local syntactic
constraints. In Fifth Conference of the European Chapter of the Association
for Computational Linguistics, Proceedings of the Conference, pages 155-
160, Berlin, Germany.

Rood, C. (1996). Efficient finite-state approximation of context free grammars.
In Kornai, A., editor, Extended Finite State Models of Language, Proceedings
of the ECAI’96 workshop, pages 58-64, Budapest University of Economic
Sciences, Hungary.

References 23

Rosenkrantz, D. and Lewis I, P. (1970). Deterministic left corner parsing. In
IEEE Conference Record of the 11th Annual Symposium on Switching and
Automata Theory, pages 139-152.

Sippu, S. and Soisalon-Soininen, E. (1990). Parsing Theory, Vol. 11: LR(k) and
LL(k) Parsing, volume 20 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag.

Stearns, R. (1967). A regularity test for pushdown machines. Information and
Control, 11:323-340.

Stolcke, A. and Segal, J. (1994). Precise N-gram probabilities from stochas-
tic context-free grammars. In 32nd Annual Meeting of the Association for
Computational Linguistics, Proceedings of the Conference, pages 74-79,
Las Cruces, New Mexico, USA.

Ullian, J. (1967). Partial algorithm problems for context free languages. Infor-
mation and Control, 11:80-101.

Valiant, L. (1975). Regularity and related problems for deterministic pushdown
automata. Journal of the ACM, 22(1):1-10.

