
Fast Parallel Recognition of

LR Language Suffixes

E. Bertsch a and M.-J. Nederhof b,1

aRuhr University, Faculty of Mathematics, Universitätsstraße 150,
D-44780 Bochum, Germany

bUniversity of Groningen, Faculty of Arts, P.O. Box 716,
NL-9700 AS Groningen, The Netherlands

Abstract

It is shown that suffix recognition for deterministic context-free languages can be
done on a PRAM multi-processor within the upper complexity bounds of the graph
reachability problem.

Key words: Computational complexity, parallel algorithms, programming
languages.

1 Introduction

The computational problem of suffix recognition with respect to a formal
language L may be stated as follows: for a given string w, decide whether there
is some v such that vw ∈ L. For deterministic context-free languages, also
known as LR languages, the time complexity of suffix recognition with a single
processor was an open problem for a full decade. It had first been addressed
in [1] in the context of practical error-recovery techniques for compilers. The
set of suffixes of any deterministic language is easily shown to be context-free,
but it is not itself deterministic in the general case. To see this immediately,
consider the deterministic language

LD = {danbncm | n,m > 0} ∪ {eanbmcm | n,m > 0}.
1 Supported by the PIONIER project Algorithms for Linguistic Processing , funded
by NWO (Dutch Organization for Scientific Research).

Preprint submitted to Elsevier Science 14 December 2004

Informally, depending on whether a possible suffix of the form apbqcr finishes
a string starting with d or with e, the number q of b’s must either exceed p or
else be equal to r. A pushdown automaton (PDA) simply guessing the right
mode would of course be non-deterministic. Note that prefix recognition, by
contrast, can be solved trivially by regarding all states of an automaton as
being final.

Independent solutions to the suffix recognition problem were presented by [2]
and [3]. The approaches differ e.g. in the amount of support they lend to
parsing. It turned out that linear time suffices. In view of what follows, it
may be noteworthy that graph reachability is also a linear-time one-processor
problem (by means of depth-first search).

Assuming the CREW-PRAM model, the time complexity of parallel recog-
nition of context-free languages (CFLs) is known to be O(log2 n) with n6

processors [4]. For some subclasses the processor bound has been improved: it
is n2 for deterministic CFLs [5], n3 for linear CFLs [6], and n3 for unambigu-
ous CFLs [5]. For these three subclasses, [7] offers lower processor bounds, for
time complexity O(n1−α log2 n) with 0 < α < 1.

Parallel recognition of general CFLs within O(log n) time has been established
on the CRCW model with n6 processors [8]. On the CREW model, however,
it has only been established for subclasses, such as the unambiguous CFLs,
with n7 processors [9], and the deterministic CFLs [10–12]. The solution by
[10] to logarithmic-time recognition of deterministic CFLs required n3 proces-
sors. The proof of correctness of the main result was presented on 12 pages of
text. The problem was investigated by [11] with a severely restricted processor
model (CROW), achieving essentially the same upper bounds as [10]. In [12],
Monien, Rytter and Schäpers, henceforth abbreviated as MRS, developed a
significantly simpler technique than [10], and showed by additional consider-
ations that the processor bound can be reduced to n2+ε. The proof of this
added property made strong use of their specific stack item construct.

We are going to show that parallel recognition of suffixes can be done by
first executing the MRS method on a given input in such a way that certain
intermediate results are stored in further tables, and subsequently computing
what amounts to graph reachability in a graph of size O(n) where n is the
string length. The first phase can obviously be done within the complexity
bounds proved by MRS; the second phase can be done within the bounds of
CREW-PRAM solution of the latter problem, namely O(log2 n) time on n2.376

processors [13, p. 248], which dominate the bounds in MRS. Alternatively, the
first phase can be performed by the algorithm from [5], with time complexity
O(log2 n) and n2 processors, but also in this case, the second phase dominates
the joint costs.

2

It is also worth noting that in the alternative CRCW-PRAM model (which
permits simultaneous assignments to one location whenever the values are
identical), graph reachability can be determined in O(log n) time on n3 pro-
cessors [13, pp. 249-250], which concurs with the results from [10] and [12] for
recognition of deterministic CFLs. This is the best combined bound that we
are currently able to state for our problem.

2 Informal description of the MRS method

This section gives a survey of the parallel recognition technique published by
Monien, Rytter and Schäpers. It is needed here because we cannot provide
a simple interface between their method and our use of the specific tables
computed during its execution. Our description is, however, less precise than
a full presentation of the algorithm would have to be. For further details the
original text of [12] should be consulted.

The steps of the algorithm correspond to steps of a deterministic pushdown
automaton, which are simulated in terms of a partial representation of stacks.
This representation consists of surface configurations of the form x = (s, i, a),
where state(x) = s is the state, pos(x) = i is the position in the input, and
symb(x) = a is the top element of the stack. The overall goal of performing
no more than a logarithmic number of steps is achieved by computing certain
data for a substring of length 2k after the corresponding data for the two
substrings of length 2k−1 of which it consists. If such computations for a given
interval take no more than constant time on the set of available processors,
the time bound follows. Let us call these substrings of length 2k k-intervals.

For each k-interval, several kinds of tabular entries are computed. For each
surface configuration x, stackk(x) is that stack which results from x by de-
terministic recognition of subsequent input symbols at the very first position
of the next k-interval. It should be clear that starting with an x of height 1,
intervals of length 2k may lead to corresponding stack heights. While this is
not of direct concern to us here, one must note that enough processors are
available to e.g. copy any partial stack in constant time.

The top element (surface configuration) of stackk(x) is designated as nextk(x).
Furthermore, there is a function, or alternatively a table, stackk(x, y, h) with
three parameters where x and y are surface configurations and h is a height.
It is defined as the stack consisting of a bottom segment of stackk(x) of height
h, in which the top element has been replaced by y.

The technically most advanced definition of the MRS paper, which happens,
however, to contribute greatly to the essential simplicity of the correctness

3

proof, is that of the function POPk(x, y, h). It yields a pair of values (z, h′).
Focusing for a moment on y, assume that y is indeed the top element of some
stackk(x, y, h) as just described. We are interested in the shortest stack that
follows within the remainder of the current k-interval relative to the input
position of y. The top element and height of that lowest stack are the z and
h′ components of the POPk entry, respectively. How tabular entries belonging
to a k-interval are computed out of entries belonging to the (k− 1)-interval is
shown with notable elegance by a sequence of figures in the MRS paper.

3 Application of the MRS method

The data we need to collect during execution of the MRS algorithm on a
candidate suffix is stored in an O(n2) sized Boolean matrix Sub(x, z), where
x and z are surface configurations. The entries in this table should become
such that Sub(x, z) = true if and only if there is a subcomputation of the
pushdown automaton starting with a stack represented by x and ending in a
stack represented by z, and the height of these two stacks is equal, and all
intermediate stacks are at least as high, and z describes a pop configuration.
Such an element z ‘terminates’ the subcomputation started with x.

The table can be constructed by the MRS method as follows. Initially Sub(x, z)
= false for all x and z. After the assignment (z, h′) := POPk(x, nextk(x), h),
where h = height(stackk(x)), in stage (I) of the inner loop in [12, p. 424],
execute an additional statement

if (h′ = 1 and element z describes a pop configuration) then Sub(x, z) :=
true;

To show that all terminating subcomputations are indeed caught by the above
condition, we must note that for any subcomputation beginning at pos(x) and
ending at some pos(z), there is a smallest k and m such that

m ∗ 2k ≤ pos(x) < (m+ 1) ∗ 2k ≤ pos(z) < (m + 2) ∗ 2k.

The clearest expression of this is the fact that the numbers pos(x) and pos(z)
written in binary notation differ in some of their respective binary digits, and
the power of 2 of the most significant digit for which they differ is equal to this
k. By definition of the POPk function, some entry at stage k will therefore
contain the element that terminates x.

In order to also capture terminating subcomputations of length zero, we let
Sub(x, x) := true for each element x that describes a pop configuration. This
can be performed in constant time by n processors.

4

Although we have not tried to formulate this observation more precisely, it can
certainly be stated that there is a very close correspondence between POPk

in MRS and the notion of k-lowness in [10], and that the first phase of our
algorithm could alternatively have been based on that approach. Please note
that the second phase as described below does not depend on k-intervals.

4 The set of possible stacks

We must now discuss the properties of suffixes in more detail with respect to
computations of a deterministic PDA. Assume a string vw ∈ L of which we
only have w. String w could be recognized by the PDA if the precise stack
built up by reading the prefix v were available for further computation. More
concretely, for one such stack, we could split up the remaining string (suffix)
w into substrings w[i0 : i1], w[i1 : i2], . . . , w[im−1 : im], where i0 = 0 and
im = n, each one of which consumes one symbol of the stack in existence prior
to the reading of w. Here, w[i : j] is the substring from the i+ 1-st up to and
including the j-th symbol of w.

Now each such consumption is precisely a terminating computation for that
stack symbol; and we noted before that Sub contains the terminator posi-
tions for all stack elements. In other words, any pair of positions (ip, ip+1) of
the above substring sequence will correspond to a pair (pos(x), pos(z)) with
Sub(x, z) = true if the pop move from z consumes no input symbol and to
(pos(x), pos(z) + 1) if it does.

The task of suffix recognition requires that we can deal with the infinite set of
stacks built up by all possible prefixes of the language. That set can, however,
be described by the possible paths through a finite directed graph with nodes
labelled by stack symbols and the states reached right after they are pushed
and edges connecting such pairs of stack symbols and states. It would also be
possible to express this fact in terms of finite automata over the stack alphabet
as shown in [14]. The graph will here be represented by the relation On, over
the set of pairs of stack symbols and states: On((s, a), (t, b)) is to mean that
stack symbol a can be placed on stack symbol b such that the state reached
after a gets pushed is s, and t was the state reached after b got pushed.

The computation of On is performed once and for all prior to the recognition
process. It can be easily obtained from a relation Ret on States × States ×
Symbols. This relation is similar to Sub in that subcomputations are repre-
sented where the stack height at the end has returned to what it was at the
beginning. A notable difference with Sub is however that the aspect of PDA
moves dealing with input symbols is completely ignored, in order to analyse
all computations that could take place during scanning of the unknown prefix

5

v. Its inductive definition is:

• for each s and a, Ret(s, s, a);
• if there is a push move on s1 and a that enters state t1 and pushes b, and

if Ret(t1, t2, b), and if there is a pop move on t2 and b that enters state s2,
then Ret(s1, s2, a);
• if Ret(s1, s2, a) and Ret(s2, s3, a) then Ret(s1, s3, a).

Assuming the PDA is reduced, we now define: On((s, a), (t, b)) if and only if

• there is a push move that enters state t and pushes b, or t is the initial state
and b is the initial stack symbol; and
• for some t′, Ret(t, t′, b) and there is a push move on t′ and b that enters

state s and pushes a.

5 Construction of directed graph for suffix recognition

We are now able to present our construction of the graph needed to recognize
the suffix, which merges the monotonous progress through the input in terms
of Sub with progress through the possibly cyclic graph represented by On.
Define a digraph with the O(n) nodes labelled by elements of the Cartesian
product States × States × Positions × Symbols. A node (s′, s, i, a) represents
that symbol a was pushed during reading of the unknown prefix, and the state
right after the push was s′, and at input position i, the same symbol a became
again exposed as top-of-stack, while the state was s.

The digraph has an edge from (s′, s, i, a) to (t′, t, j, b) iff Sub(x, z) for x =
(s, i, a), the state of the configuration following z by means of the pop move
equals t, the input position reached by that move (by adding 0 or 1) equals j,
and On((s′, a), (t′, b)). This is related to development of the stack as illustrated
in Figure 1. It is clear that the MRS procedure can be extended with the task
of constructing all such edges, without an increase in the number of processors
or in (the order of) the time consumption.

We may assume a perpetual bottom-of-stack symbol c, and assume that accep-
tance is by final state sf and empty stack (apart from c). Digraph reachability
is now defined with a number of possible ‘source’ nodes and a single ‘sink’
node. Any node (s′, s, 0, a) can be source if there is a push move that enters
state s′ and pushes a and Ret(s′, s, a). The sink is (s0, sf , n, c). If it is reachable
from some source (s′, s, 0, a), then there is a sequence w[i0 : i1], w[i1 : i2], . . . ,
w[im−1 : im], where i0 = 0 and im = n, with the following properties. Their
concatenation equals the input string w, which constitutes a correct suffix of
the language L. There is a stack with m symbols, each of which is removed at

6

?
?

PSfrag replacements

aaa
b bb bbb

cc

ss′

tt′

s0 sf

c

(s′, s, i, a)
(t′, t, j, b)

unknown prefix candidate suffix

Sub(x, z)
On((s′, a), (t′, b))

Fig. 1. Development of stack, in relation to table items.

the end of processing of some w[ip : ip+1], in the manner explained in Section 4.
This stack may exist after reading some unknown prefix v that precedes w in
some string vw ∈ L. Conversely, if w is a proper suffix of a string vw ∈ L,
then (s0, sf , n, c) must be reachable from some (s′, s, 0, a), by an appropriate
partition of w into substrings. The special case that w ∈ L, with v empty, is
solved already by MRS. We may recognize infixes in addition to suffixes by
taking all (s′, s, n, a), for any s′, s and a, to be sink nodes.

Acknowledgments

Ideas and suggestions provided by anonymous referees are gratefully acknowl-
edged.

References

[1] H. Richter, Noncorrecting syntax error recovery, ACM Transactions on
Programming Languages and Systems 7 (3) (1985) 478–489.

[2] J. Bates, A. Lavie, Recognizing substrings of LR(k) languages in linear time,
ACM Transactions on Programming Languages and Systems 16 (3) (1994)
1051–1077.

[3] M.-J. Nederhof, E. Bertsch, Linear-time suffix parsing for deterministic
languages, Journal of the ACM 43 (3) (1996) 524–554.

[4] W. Rytter, The complexity of two-way pushdown automata and recursive
programs, in: A. Apostolico, Z. Galil (Eds.), Combinatorial Algorithms on
Words, Springer-Verlag, 1985, pp. 341–356.

7

[5] M. Chytil, M. Crochemore, B. Monien, W. Rytter, On the parallel recognition of
unambiguous context-free languages, Theoretical Computer Science 81 (1991)
311–316.

[6] W. Rytter, On efficient parallel computations of costs of paths on a grid graph,
Information Processing Letters 29 (2) (1988) 71–74.

[7] L. Larmore, W. Rytter, Almost optimal sublinear time parallel recognition
algorithms for three subclasses of context free languages, Theoretical Computer
Science 197 (1998) 189–201.

[8] W. Rytter, On the complexity of parallel parsing of general context-free
languages, Theoretical Computer Science 47 (1986) 315–321.

[9] W. Rytter, Parallel time O(log n) recognition of unambiguous context-free
languages, Information and Computation 73 (1987) 75–86.

[10] P. Klein, J. Reif, Parallel time O(log n) acceptance of deterministic CFLs on an
exclusive-write P-RAM, SIAM Journal on Computing 17 (3) (1988) 463–485.

[11] P. Dymond, W. Ruzzo, Deterministic context-free language recognition, Journal
of the ACM 47 (1) (2000) 16–45.

[12] B. Monien, W. Rytter, L. Schäpers, Fast recognition of deterministic cfl’s with
a smaller number of processors, Theoretical Computer Science 116 (1993) 421–
429.

[13] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.

[14] E. Bertsch, M.-J. Nederhof, Regular closure of deterministic languages, SIAM
Journal on Computing 29 (1) (1999) 81–102.

8

