
Some observations on LR-like parsing with

delayed reduction

E. Bertsch a and M.-J. Nederhof b

aRuhr University, Faculty of Mathematics, Universitätsstraße 150,
D-44780 Bochum, Germany

bSchool of Computer Science, University of St Andrews,
North Haugh, St Andrews, Fife, KY16 9SX, Scotland

Abstract

We discuss a bottom-up parsing technique based on delayed reductions, and in-
vestigate its capabilities and limitations. Some non-LR(k) grammars, for any k, are
handled deterministically by this method. Surprisingly, and counter-intuitively from
the viewpoint of LR(k), increase of delay may lead to decrease of determinism. We
also present a variant that uses both delay and lookahead.

Key words: Formal languages, grammars, parsing, LR(k)

1 Introduction

In a monograph that appeared in 1980, Marcus [1] described an innovative
parsing method for natural languages that included various linguistically mo-
tivated features and the use of sentential buffers to delay parsing decisions in
case of conflicts. Nozohoor-Farshi [2] applied Marcus’ ideas to grammars of
the kind studied in the theory of formal languages and commented on possi-
ble formalisations and generalisations. Leermakers [3] went a step further by
precisely describing an item-based technique akin to that known for LR(k)
grammars. To our knowledge, that article has been the only one that dealt
with Marcus parsing in archival computer science journals. While Leermakers
was also concerned with the usefulness of his work for linguists, he posed the
challenge of describing the extent to which his formalisation of Marcus parsing
leads to determinism. In particular, he assumed that by using more context,
a parser “suffers from fewer reduce-reduce conflicts and is deterministic for
more grammars”. Our present study shows that this assumption cannot be
upheld in its pure form, but it appears that a blend of delayed reduction and

Preprint submitted to Elsevier Science 4 September 2007

lookahead may be used to achieve a genuine increase of determinism over the
LR(k) approach.

The Leermakers paper should be consulted for the theoretical background. He
used a functional programming style. We provide a new description in very
similar terms to those used in parser construction for programming languages
[4]. Our designation of the parsing method and the terms referring to it will
be “ML”, for Marcus-Leermakers.

To introduce the problems that ML recognition and parsing address, let us
consider the following fragment of a possible programming language syntax.
Due to its nondeterminism in LR(k) terms, it cannot be expected to have
appeared in any concrete grammar. It is well known that language designers
prefer LR(1) constructs. Our concern is to be able to deal with cases in which
that precaution is disregarded. 1

Statement → ExprStatemt | Declaration

ExprStatemt → AccExpr ’[’ Expr ’]’ | . . .

AccExpr → identifier | . . .

Declaration → identifier ’[’ Expr ’:’ Expr ’]’

Expr → . . .

The expressions separated by ’:’ might specify dynamically computable lower
and upper bounds for arrays. The ExprStatemt refers to components of such
arrays.

Having read the identifier , there is a shift-reduce conflict which cannot be
resolved by any finite amount of lookahead. The decision is only possible after
reading ’[’, reading and reducing to Expr , and examining the ensuing token,
i.e. either ’:’ or ’]’.

The ML solution is to use LR-like items including delay of reduction. Thus
instead of the problematic item [AccExpr → • identifier], with appropriate
ML delay there will be an item [AccExpr ’[’ Expr ’]’ → • identifier ’[’ Expr ’]’],
with a left-hand side of length 4. Its reduction is not performed until all of
its right-hand side has been found and the item [AccExpr ’[’ Expr ’]’ →
identifier ’[’ Expr ’]’ •], with the dot at the end, is an element of the current
state. The right-hand side is then replaced by its left-hand side essentially as
in usual LR(k) recognition, with a Goto action over more than one symbol.

1 For interesting background reading, Section 19.1 “Grammatical difficulties” of
the original Java(TM) Language Specification [5] is recommended. It describes
“problems” that the Java designers encountered with LALR(1), and the syntac-
tical changes they were forced to administer.

2

ML parsing is similar to some techniques of noncanonical LR parsing [6–8].
Our approach differs from them by needing only a single pushdown stack.

2 State construction

The following procedures are strongly reminiscent of LR(k) state construction.
We presume that in view of the precise treatment in [3], no formal proof of
correctness must be given here. It is a straightforward extension of LR theory.

Let G = (V, T, P, S) be a context-free grammar. Fix integer k ≥ 0. We define
a k-item for G as an entity of the form [Aα → β • γ] such that for some rule
A → δ ∈ P , δα = βγ, and |α| ≤ k. Informally, βγ consists of the right-hand
side of a rule for A and the context α of A that is also represented in the
left-hand side of the item.

Further, the notation k : β designates the prefix of length k of β if |β| > k,
and all of β otherwise. Overloading the colon operator, the rest of string β
behind k : β is designated as β : k. Thus β = (k : β)(β : k).

Define a function close(Q), where Q is a set of k-items, to return Q′ computed
by:

Q′ := Q

repeat

for all [α → β • Bγ] ∈ Q′ and B → δ ∈ P

add [B(k : γ) → • δ(k : γ)] to Q′

until nothing new added to Q′

return Q′

Define a set of items q0 := close([S† → • S#k]), where # is a distinguished
symbol that acts as end-of-sentence marker and S† is a new symbol. The set
States of ML states is computed by:

3

States := {q0}

repeat

for all Q ∈ States

for all δ ∈ {a ∈ T | [α → β • aγ] ∈ Q} ∪ {ζ | [ζ → • η] ∈ Q}

Goto(Q, δ) := close({[α → βδ • γ] | [α → β • δγ] ∈ Q})

add Goto(Q, δ) to States

until nothing new added to States

This simultaneously defines Goto(Q, δ) 6= ∅ for appropriate choices of Q ∈
States and strings δ ∈ V ∗. Here δ may consist of several symbols and thereby
the dot may traverse over several symbols in one goto action. This requires
a reduction for each item [α → β •] that includes pop length(β) pop steps,
where pop length(β) is defined recursively as the following (ε stands for the
empty string):

if β = ε return 0

else if 1 : β ∈ T return 1 + pop length(β : 1)

else return 1 + pop length(β : (k + 1))

As an example, if we assume k = 1 and β = ABcDeFG , then pop length is
called recursively for ABcDeFG, cDeFG, DeFG, FG, ε, and the returned value
is 4. Note that where terminal symbol c is the first symbol, nothing else is cut
off.

Declare States as deterministic for ML(k, 0) recognition if states containing an
item [α → β •] contain no other items. We then call the grammar ML(k, 0),
and the parse time procedure is as sketched in Figure 1. This assumes the
input is extended on the right by k copies of #. The input symbols, including
the end-of-sentence markers, are named a1, a2, . . .

As an example, consider the following ML(1, 0) grammar G1.

S→A B | A′ C

A→ a

A′→ a

B→D b

C→D c

D→ d | e D

With k = 1 we obtain a deterministic set States containing 16 states, which

4

i := 0

repeat

if state Q on top of stack contains item of form [α → β •]

pop pop length(β) states

let Q′ be the new state on top

push Goto(Q′, α)

else if Goto(Q, ai) is undefined

report failure and halt

else

push Goto(Q, ai)

i := i + 1

until top of stack is {[S† → S#k •]}

report success

Fig. 1. Parse time procedure for ML(k, 0) grammars.

we cannot all show due to length restrictions. The most critical state is q1 =
Goto(q0, a) = close({[A B → a • B], [A′ C → a • C]}). By the closure, q1 also
contains [B → • D b], [C → • D c], [D b → • d b] and [D c → • d c], and
[D b → • e D b] and [D c → • e D c]. In the ML parser, the choice between
A → a and A′ → a is effectively postponed until either b or c is read.

Note that an unbounded number of terminal symbols in the input separate
the a from either b or c. It is clear that the set of LR(m) states cannot be
deterministic for any m, because of a reduce-reduce conflict involving A → a
and A′ → a. In particular, the grammar is not LR(0), which concurs with
ML(0, 0).

By an increase of k, the context can be extended. Fix j > 1 and consider the
grammar Gj

2 given by:

S→A Dj−1 B | A′ Dj−1 C

A→ a

A′→ a

B→D b

C→D c

D→ d | e D

The grammar Gj
2 is ML(j, 0) but not ML(j−1, 0). (In fact, it is ML(k, 0) iff k ≥

5

j.) Now q1 = Goto(q0, a) = close({[A Dj−1 B → a • Dj−1 B], [A′ Dj−1 C →
a • Dj−1 C]}), and q1 also contains [Dj−1 B → • d Dj−2 B] and [Dj−1 C →
• d Dj−2 C], and [Dj−1 B → • e Dj−1 B] and [Dj−1 C → • e Dj−1 C]. As
before, the choice between A → a and A′ → a is effectively postponed until
either b or c is read.

3 ML with lookahead

The limitations of delayed reduction can be witnessed in the following sLR(1)
grammar G3, which is not ML(k, 0) for any k.

S→A | S A

A→ a | a b

Assume a fixed k. The ML(k, 0) state reached after reading an initial a con-
tains amongst others all items of the form [AAj#k−j → a • Aj#k−j] and
[AAj#k−j → a • bAj#k−j] where 0 ≤ j ≤ k. Context of length k > 0 follow-
ing a or ab avoids a shift-reduce conflict. However, this context becomes shorter
by one symbol for each subsequent a until the state {[A → a •], [A → a • b]}
is reached, and the conflict becomes unavoidable.

In order to allow grammars such as the above to be handled deterministically
within the ML framework, we introduce lookahead. This leads to ML(k, m)
parsing, which reduces to LR(m) parsing for k = 0.

We first define Firstm(β) = {m : w | β ⇒∗ w}, for each string β of terminals
and nonterminals. Here ⇒∗ stands for derivation (of a terminal string) in one
or more steps.

Next, we extend the concept of k-items to (k,m)-items, by an additional
component referring to the (terminal) context behind the end of the right-
hand side, as done in the case of LR(m). The initial state is now q0 :=
close([S† → • S#k, ε]), and the closure operation is refined to:

Q′ := Q

repeat

for all [α → β • Bγ, x] ∈ Q′ and B → δ ∈ P and y ∈ Firstm((γ : k)x)

add [B(k : γ) → • δ(k : γ), y] to Q′

until nothing new added to Q′

return Q′

6

As usually, the lookahead component is used to decrease the number of shift-
reduce and reduce-reduce conflicts. If none remain, we say the grammar is
ML(k, m), which generalises our previous definition of ML(k, 0) in a natural
way.

We mention in passing that analogues of sLR(m) and LALR(m) can be intro-
duced as well. For example, sML(1, 1) might designate the case that ML(1, 0)
states allow resolution of conflicts by checking one symbol of terminal look-
ahead against the ’follow’ sets of left-hand sides of candidate items, which can
now consist of several grammar symbols.

Those example grammars from [6,7,2] that generate deterministic languages
are all ML(1, 1) but mostly not ML(1, 0). There are non-ML(k, m) grammars
of deterministic languages, for all k and m, that can be recognised noncanon-
ically by means of two stacks, such as the first grammar from [8].

With lookahead, our observations about the family of grammars Gj
2 at the end

of Section 2 can be refined: grammar Gj
2 is ML(k, m) iff k ≥ j irrespective of

m. Lookahead is ineffective here due to the arbitrarily long string separating
a from either b or c in B or C, respectively.

4 Non-monotonicity

The class of LR(m) grammars is properly contained in the class of the LR(m+
1) grammars [9]. More generally, the class of ML(k, m) grammars is properly
contained in the class of the ML(k, m + 1) grammars, for any fixed k. The
behaviour of k is not monotone however. A first illustration of this is the
grammar G4:

S→ a | S S S b

This grammar is ML(0, 0) but not ML(1, 0), which is explained as follows.
For k = 1, q0 includes [S# → • SSSb#], and by closure also [SS → • aS]. By
a shift with a, we obtain state q1 that includes [SS → a • S], and by closure
also [S → • a] and [S → • SSSb], as well as [SS → • aS]. By a further shift
with a, we obtain state q2 that includes [S → a •] and [SS → a • S], and by
closure also [S → • a], so that a shift-reduce conflict occurs.

The situation remains unchanged if we choose m > 0. The two relevant items
above correspond to rule occurrences immediately to the left of an occurrence
of S, and am ∈ Firstm(S), so that q2 = Goto(Goto(q0, a), a) includes amongst
others [S → a •, am] and [S →• a, am]. This implies that a shift-reduce conflict

7

occurs for following input am, and thereby the grammar is not ML(1, m) for
any m.

An example of oscillating behaviour is witnessed for the grammar G5:

S→ c | S d A

A→ a | a b

This grammar is ML(k, 0) iff k is odd. For even k, q0 consists of items
[S#k → • c#k] and [S#k → • SdA#k], and by closure also items of the
form [S(dA)j#j′ → • c(dA)j#j′

] and [S(dA)j#j′ → • SdA(dA)j#j′
], for

j = 1, . . . , k/2 and j′ = k − 2j. For k = 0, or for k > 0 and j = k/2, A
appears at the end of a right-hand side, and the absence of right context even-
tually leads to a shift-reduce conflict. For odd k however, A is always followed
by either d or #, so that a conflict is avoided.

We can have arbitrary behaviour of the ML(k, m) property relative to a finite
selection of positive values of k. Let X be a finite set of positive integers.
Define the grammar GX

6 with the set of terminals {a, b, c, d, f} ∪ {aj | j ∈ X},
the set of nonterminals {S, A,B,C, D, E, F} ∪ {Aj | j ∈ X} ∪ {Bj | j ∈ X}
and the rules:

S→ aj Aj A, for each j ∈ X

S→ aj Bj B, for each j ∈ X

Aj →C dj−1 D, for each j ∈ X

Bj →C dj−1 E, for each j ∈ X

A→F a

B→F b

C→ c

D→ d

E→ d

F → f | f F

This grammar is ML(k, m) iff k /∈ X, for k positive and any m. Choose a fixed
k ∈ X, and let m = 0. A shift with ak, then a shift with c, and k−1 shifts with
d lead to a state consisting of [Cdk−1D → cdk−1 • D], [Cdk−1E → cdk−1 • E],
[D → • d] and [E → • d]. After another shift with d, a reduce-reduce conflict
occurs. If we choose m > 0, this does not avoid the above conflict, as an
occurrence of either a or b, needed to distinguish between the two cases, can
be preceded by an arbitrarily long string of f ’s.

Such conflicts are avoided for any positive k not in X however, as occurrences
of D and E in items are then always followed by right contexts starting with

8

A and B, respectively.

5 Descriptional complexity

ML parsers can be more compact than LR parsers for LR(m) grammars.
Consider the family of grammars Gj

7 of the form:

S→A C a | B C b | e S e | f S f

A→ d

B→ d

C→ cj

where j ≥ 1. These grammars are ML(1, 1) irrespective of j. Delayed reduction
with context C and lookahead a or b are sufficient to allow a deterministic
choice between A → d and B → d. The size of the ML parser remains linear
in j. However, for k = 0, m needs to be at least j + 1 to make the grammar
ML(0, m), i.e. LR(m). Then for each string x ∈ {e, f}m there is, amongst
others, a state consisting of [S → eSe •; x], and the parser will have size
exponential in j.

A more general result is obtained by replacing S → A C a and S → B C b
in the above grammar by S → A Ci a and S → B Ci b, respectively, for
some i ≥ 1. This grammar is ML(i, 1), with a parser of linear size in j, and
ML(i− 1, m) iff m > j, and for m = j + 1 the parser has exponential size in
j.

6 Concluding remarks

The algorithms presented in this paper were implemented, and the discussed
examples were all checked against this implementation.

Concerning classes of grammars that are ML(k, m), we can reach the following
conclusions:

• For any k and m, ML(k, m) is properly contained in ML(k, m + 1).
• For any k, ML(k + 1, 0) contains grammars not in ML(k, m) for any m.
• For any k, ML(k, 0) contains grammars not in ML(k + 1, m) for any m.
• A ML(k, m) parser may be exponentially less compact than a ML(k+1, m′)

parser, where m and m′ are the minimal values needed for determinism.

9

That the ML property is not monotone in k has far-reaching consequences. By
increasing k > 0, some conflicts can be avoided that would occur in LR(m)
parsers, but at the same time, fresh conflicts may arise elsewhere.

A subject for further study is whether delayed reduction can be used selec-
tively. In this article, the context to delayed reduction has a uniformly deter-
mined maximal length. Selectivity would mean that for some states a longer
context is chosen to resolve shift-reduce or reduce-reduce conflicts. This leads
to a new range of constructional possibilities.

As our formulation of ML parsing is based on a machine model with a single
stack, it is straightforward to apply dynamic programming techniques to han-
dle non-ML grammars, in the sense first explored by [10]. For a recent study
of non-deterministic constructs in programming language grammars, cf. [11].

Acknowledgments

The contributions of an anonymous reviewer are gratefully acknowledged.

References

[1] M. Marcus, A Theory of Syntactic Recognition for Natural Language, MIT
Press, 1980.

[2] R. Nozohoor-Farshi, On formalizations of Marcus’ parser, in: 11th International
Conference on Computational Linguistics, University of Bonn, Bonn, 1986, pp.
533–535.

[3] R. Leermakers, Recursive ascent parsing: from Earley to Marcus, Theoretical
Computer Science 104 (1992) 299–312.

[4] A. Aho, M. Lam, R. Sethi, J. Ullman, Compilers: Principles, Techniques, &
Tools, Addison-Wesley, 2007.

[5] J. Gosling, B. Joy, G. Steele, The Java Language Specification, Addison-Wesley,
1996.

[6] T. Szymanski, J. Williams, Noncanonical extensions of bottom-up parsing
techniques, SIAM Journal on Computing 5 (1976) 231–250.

[7] K.-C. Tai, Noncanonical SLR(1) grammars, ACM Transactions on
Programming Languages and Systems 1 (1979) 295–320.

[8] S. Schmitz, Noncanonical LALR(1) parsing, in: O. Ibarra, Z. Dang (Eds.),
Developments in Language Theory, 10th International Conference, Vol. 4036

10

of Lecture Notes in Computer Science, Springer-Verlag, Santa Barbara, CA,
USA, 2006, pp. 95–107.

[9] S. Sippu, E. Soisalon-Soininen, Parsing Theory, Vol. II: LR(k) and LL(k)
Parsing, Vol. 20 of EATCS Monographs on Theoretical Computer Science,
Springer-Verlag, 1990.

[10] B. Lang, Deterministic techniques for efficient non-deterministic parsers, in:
Automata, Languages and Programming, 2nd Colloquium, Vol. 14 of Lecture
Notes in Computer Science, Springer-Verlag, Saarbrücken, 1974, pp. 255–269.

[11] E. Scott, A. Johnstone, Right nulled GLR parsers, ACM Transactions on
Programming Languages and Systems 28 (2006) 577–618.

11

