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It was recently shown that the MIX language, over a three-symbol alphabet, is generated
by a multiple context-free grammar. This paper investigates generalizations of the MIX
language to alphabets of any size, as well as generalizations of the above-mentioned
grammar. Presented are theoretical results that shed new light on the relation between
these languages and these grammars. Precise conjectures are formulated that would
further narrow down this relation. It is explained that validity of these conjectures would
greatly enhance our understanding of the abilities of grammatical formalisms to describe
free word order.

1 Introduction

Since the earliest attempts to build formal grammars describing the syntactic struc-
ture of natural languages, a central aim has been to identify formalisms with the
appropriate generative power. If a formalism is too weak, it cannot describe all lan-
guages, or requires inelegant or an unreasonably large number of grammar rules
to describe natural language phenomena. If a formalism is too strong, and allows
description of phenomena that are unlike those in any natural language, then this
causes its own problems. For example, the formalism may offer too little guidance
to a linguist building a grammar by hand, and the search space may be too large for
an algorithm to effectively learn a grammar from examples. Moreover, parsing and
recognition algorithms of very powerful formalisms tend to have time complexities
that are too high to be useful for practical purposes.

Against the backdrop of the Chomsky hierarchy (Chomsky 1959), the notion of
mildly context-sensitive grammars was an attempt to identify properties required of
an appropriate formalism for describing syntax, and to motivate tree adjoining gram-
mars as a prime example of such a grammar formalism (Joshi 1985). The specified
properties included formal requirements and informal characterizations.

In the years that followed, other formalisms were shown to be equivalent to tree ad-
joining grammars (Vijay-Shanker & Weir 1994), adding to the evidence that the tree
adjoining languages are a natural class. In addition, more powerful formalisms have
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been found that clearly satisfy the formal requirements of mildly context-sensitive
grammars and also appeared to satisfy the informal characterizations. The most no-
table are the multiple context-free grammars (MCFGs) (Seki et al. 1991), generating
the multiple context-free languages (MCFLs). For an overview, see Kallmeyer (2010).

Joshi (1985) singles out one particular artificial language as posing a potential chal-
lenge to the theory of mildly context-sensitive grammars. This is the language of
strings over {b1, b, b3} such that, for some m, each of the three symbols occurs ex-
actly m times, in any order. It is most commonly known as the MIX language (Gazdar
1988), referred to below as MIX3 to be able to put it in a broader context later. It is
also known as the Bach language, after Bach (1981), although its properties have been
studied at least since Aho & Ullman (1972: Exercise 2.6.3c).

The MIX3 language represents an extreme case of free word order, which appears
to be irrelevant to any natural language. Joshi (1985) conjectured that MIX3 was
not a tree adjoining language, consistent with the idea that tree adjoining grammars
constitute an appropriate restriction of the power of context-sensitive grammars in
order to model natural languages. The conjecture was finally proved by Kanazawa &
Salvati (2012).

However, this leaves open the question whether MIX3 can be generated by other
formalisms that are generally considered to be mildly context-sensitive, such as the
MCFGs. A recently published result by Salvati (2015) shows the answer to be positive,
by a proof via the O language. MIX3 and Os are rationally equivalent, which means
that if one is an MCFL then so is the other.

In this paper we will broaden the investigation to the O,, languages (Fischer &
Rosenberg 1968). For fixed n > 1, there are 2n symbols a1, ...,an,a1,...,0n. A
string is in O,, if, for each ¢, the number of occurrences of a; equals the number
of occurrences of @;. Similarly, a string is in the generalized MIX,, language over
{b1,...,b,} if, for some m, each of the n symbols occurs exactly m times. For each
n, O, and MIX,,;; are rationally equivalent. Formally, T7(0,) = MIX, 1 and
T>(MIX,, 1) = O, where T} and T3, are two rational transductions. (For language
L and rational transduction 7" we let T(L) = {w | Jv € L (v,w) € T'}.) We can
specify Th and T5 by finite-state transducers M; and My, each with a single state.
For M, the transitions are labeled a; : b;, for 1 < ¢ < mn,anday---a, : b,41. For
Mo, the transitions are labeled by - - - b; : a; and b1 -+ - b1 1 @; for 1 <i < n.

In this paper, we formulate the family of MCFGs G,, that are conjectured to gen-
erate O,,. If our conjectures are true, this would imply the remarkable finding that
the MCFLs include all permutation closures of regular languages; by the permutation
closure of alanguage L we mean the set of all strings that are permutations of strings
in L. This implication was mentioned before by Salvati (2015) on the basis of Lat-
teux (1979).! Note that this would also mean that the MCFLs, unlike the context-free
languages, are closed under the operation of permutation closure.

! The relevant result is Proposition IIL12 of Latteux (1979), which states that the permutation closure
of a regular language with n symbols is in the closure of MIX,,+1 under homomorphism, inverse
homomorphism and intersection with regular language. Note that MCFLs are closed under these three
operations. The proof appears to require the following correction in the sixth line: “g(h =1 (c(w*))NR)
ou R={a1,...,ap}*wi™ - wp™”
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The importance of our investigation is that it sheds more light on the apparent
incongruence between the generative power of some formalisms commonly consid-
ered to be mildly context-sensitive, and the observation that extreme free word order
does not seem to occur in natural languages.

2 The O,, languages

Let n be a positive integer. The alphabet X, consists of the 2n pairwise distinct
symbols ay,...,an,a7,...,a,. The length of a string w is denoted by |w|. For a
string w over ¥,, and symbol a € ¥,,, |w|, denotes the number of occurrences of a
in w.

The imbalance of w € ¥}, denoted by imb(w), is the n-tuple (|w|a, — |Wlag, - - - »
|wla, — |wlzr). In other words, for each ¢ (1 < ¢ < n), we match the number of
occurrences of a,; against the number of occurrences of @;, and the difference, which
can be positive or negative, is one value in the imbalance. The expression 0™ denotes
the tuple of n zeros. If w is such that imb(w) = 0™, then we say that w is balanced.

For each n, the language O,, is defined to be the set of balanced strings, or formally
0, ={w € ¥ | imb(w) = 0"}.

3 MCFGs

We use terminology related to the MCFGs from Seki et al. (1991). This formalism
is largely equivalent to the string-based LCFRSs from Vijay-Shanker, Weir & Joshi
(1987).

A multiple context-free grammar (MCFG) is a tuple G = (X, N, S, R), where X is
a finite set of terminals, N is a finite set of nonterminals (NN = (), and S € N
is the start symbol. Each nonterminal is associated with a positive integer, called its
fanout. The start symbol has fanout 1.

Further, R is a finite set of rules, each of the form:

Ao(81y -y 8kg) — Ar(@r,.o oy Tmy) A2(Timgg1y oy Ting) *
Ar(xm,.,lJrl, e {I/'mT)

where each A4; (0 < i < r) has fanout k;, m; = Zj:lgjgz‘ ki1 < i <o),
Z1,...,%Tm, are pairwise distinct variables, and each s; (1 < j < ko) is a string
consisting of variables and terminals. Moreover, each variable x; (1 < ¢ < m,) oc-
curs exactly once in the left-hand side Ao(s1, - . ., Sk, ) and the left-hand side contains
no other variables. The value r is called the rank of the rule.

An instance of a rule is obtained by choosing a string over ¥* for each variable in
the rule, and then replacing both occurrences of each variable by the chosen string.
Let 3¢ denote the set of symbols of the form A(wy, ..., wg), where k is the fanout
of A € N and wy,...,w, € X*; we refer to such a symbol as an instance of a
nonterminal. The binary ‘derives’ relation = ¢ over f)g is defined by 1A dy =
D10 @2 if A— ¢ is a rule instance, with Ae f]g and ¢1, 02,0 € f)g The reflexive,
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transitive closure of = ¢ is =¢,. The language generated by G is L(G) = {w € ¥* |
S(w) =¢ e}, where ¢ is the empty string.

The largest fanout of any nonterminal in a given MCFG is called the fanout of the
grammar, and the largest rank of any rule is called the rank of the grammar. We call
a MCFG binary if the rank is at most 2. Every MCFG can be brought into binary
form, at the expense of a higher fanout (Rambow & Satta 1999). We assume that all
considered MCFGs are reduced, which means that each nonterminal is involved in at
least one derivation S(w) =¢, £. We say a MCFG is in normal form if terminals occur
only in rules with rank 0, or in other words if a rule contains variables or terminals,
but not both at the same time. A grammar can be brought into normal form without
increasing the fanout (Seki et al. 1991: Lemma 2.2).

4 MCFGs and the O,, languages

In order to relate the O,, languages to the languages generated by MCFGs, we start
with a negative result.

Theorem 1 Foranyn > 2, the language O,, is not generated by any MCFG with fanout
strictly smaller than n.

For the proof, assume that O,,, for some n, is generated by a MCFG G with
fanout n — 1 or smaller. Without loss of generality, assume G is in normal form.
We first show that if there are a nonterminal A and strings wy, ..., wg, W}, ..., w)
such that A(wy,...,wg) =& € and A(w,...,w)) =% &, then imb(w, - - - wy)
= imb(w]---w}). A sketch of the proof is as follows. Suppose that
imb(wy - --wy) # imb(w]---w)). Then let w € X* be such that S(w) =
D1 A(wy, ..., wi)Pp2 =& & such a derivation must exist as we assumed gram-
mars are always reduced. Moreover w € O, by our initial assumption. Now re-
place the subderivation of A(w,...,wy) by the subderivation of A(w?,. .., wy;);
this is possible by the context-freeness of MCFGs. Thereby we obtain S(w’) =§
PrA(w, ..., w)pe =& €, for some w' such that imb(w) — imb(w’) =
imb(wy - - - wg) — imb(w] - - - w},). But since imb(w; - - - wy) — imb(w] - - - w},) # 0™
and imb(w) = 0™, we must have imb(w’) # 0™, which violates the assumption that

L(G) = 0,
We conclude that each nonterminal A can be associated with a unique n-tuple
74 such that A(wi,...,wg) =§& ¢ implies imb(w;---wg) = 7Ta4. Let d be

Maxg -, —(d,,....d,),: |di|, or in other words, the largest absolute point-wise imbal-
ance in any of the n pairs (a;,d;) of symbols for any nonterminal A. Let p be the
rank of the grammar.

Now consider the balanced string:

w = a[—l(nfl)m,(a1 . an>ma—2(nfl)m(a1 . Cbn)"L . (061 . an)"LW("71)7'L

for m = p(2d + n) + d. In a derivation of w, from the root downwards, con-
sider the first nonterminal instance of the form A(ws,...,w;) where 2d + n <
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|wy - - - wilar < p(2d 4 n); such an instance always exists, as the number of occur-
rences of a7 in the left-hand side of a rule instance and a nonterminal instance in its
right-hand side can differ by at most a factor p. This implies d + n < |w; - - - Wg|q,
< p(2d + n) + d = m, by the definition of d. As w contains n — 1 substrings of

the form (a; - - - a,)™ and a; occurs nowhere else, it follows that wy, . .., wy must
contain at least some non-empty parts of these substrings (a; - - - a,,)™, including at
least (d +n) — (n — 1) = d + 1 occurrences of each of ag, ..., an, dueto k <n —1

by our assumptions. No substring (a; - - - a,)™ can be entirely included in any of
w1, ..., Wi however, as |wy - - - wg|q, < M. Moreover, w; - - - wy, must include at least

(d4+1)—d = 1 occurrence of each of @z, . . ., @, so that some non-empty part of each
of the n substrings a_i("fl)m of w must be included in wy, . . . , wy. This is impossible
because k < n, which completes the proof. |

As the above proof of non-existence fails for fanout greater than or equal to n, one
may suspect the following.

Conjecture 1 Foranyn > 2, the language O,, is generated by a binary MCFG of fanout
n.

For n > 2, let the binary MCFG G,, of fanout n with alphabet ¥,, be defined by the
following rules:

S(xy- - xn) — Alzy,...,2n)
A(wy,...,wp) — ¢, forallwy,...,w, €3, U{e} such that
|wy -+ wy,| < 2and imb(w; - - - w,) = 0"
A(s1,..y8n) — A(z1,....2,) Aly1,...,yn), for all non-empty
S1,...,8y, such that |s; - - - s,,| = 2n, s starts with x1,
21Ty and y; - - - Yy, are subsequences of s1 - - - s,

and no s; has a substring of the form z;z ;41 or y;y;4+1
We now wish to strengthen Conjecture 1 to:
Conjecture 2 Foranyn > 2, L(G,) = O,.
Even stronger is the following:

Conjecture 3 Foranyn > 2, andwy, ..., w, € Xy, such thatimb(w - --wy,) = 0",
we have A(w1, ..., wy) :>Z‘,,, €

It is clear that if Conjecture 3 is true, then so is Conjecture 2. The added value of Con-
jecture 3 is that it would exclude the possibility of making a ‘wrong’ derivation step,
as long as all nonterminal instances contain arguments that together are balanced.
For example, how a string w € O, is divided into n parts in the first step using an
instantiated rule S(wy - --w,) — A(ws,...,w,), with w = w; - - - w,, would not
affect whether we can complete the derivation.
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A proof of Conjecture 3 would likely be by induction, first on the length of
w1 - - - Wy, and second on the number of arguments among w1, . .., w, that are €.
The base case is obviously wy = ... =w, =¢€.

The inductive step is straightforward if at least one of the arguments, say w;, is €.
Two subcases can be distinguished. In the first, at least one of the remaining argu-
ments, say wj, has length 2 or greater. Assume without loss of generality that 1 < ¢ <
j. We can then use a rule of the form A(sq1,...,8,) = A(z1, ..., ) AW1, -, Yn)s
where:

TrYk ifl<k<i
Yk ifk=1

S = Tk_1Yk ifi<k<j
Ty ifk=7
TrYk ifj<k<n

In the required rule instance, we would replace each yi (1 < k < n) by ¢, replace
each xj, by wy if K < i or j < k, replace each x;_; by wy if i < k < 7, and replace
xj_1 and x; by non-empty strings w’ and w”, respectively, such that w; = w'w”.
We also use the rule A(e, ... ) — &, together with the inductive hypothesis for a
nonterminal instance in which one argument fewer is .

In the second subcase, all the non-empty arguments are of length 1. There
must then be two arguments, say w; and wj, that are a; and ay, respectively, for
some ¢ (1 < ¢ < n). We can then use a rule of the form A(sy,...,s,) —
A(x1,...,2n) A(y1,...,Yn), where each s (1 < k < n)is z4yg. In the required
rule instance, we would replace each zj, and y; (1 < k& < n) by wy, and ¢, respec-
tively, if & ¢ {4, j}, and by € and wy, respectively, if k& € {7, j}. We also use a rule
of the form A(vy,...,v,) — ¢, withv; = ay and v; =ag, and vy = efor k ¢ {i,j},
together with the inductive hypothesis.

The inductive step is less straightforward if w, ..., w, are all non-empty. We
then need to show that there is a sequence of 2n strings v1, . . . , V2, such that:

- there is a sequence of positive integers k1, . . . , k,, such that for each i (1 < i <
n) we have w; = Uy, 41 Um,, Where m; = Ej:1<j<,i k; (0 <i < mn),and
m, = 2n, and

o there is a permutation wj,...,Un, u},...,ul, of vi,...,va,, such that

imb(uy - - up,) =imb(u) - --u)) =07, |uy - - - u,| > 0and |uf -l | > 0.

In words, a balanced string divided into 7 non-empty parts can be further divided into
2n smaller parts, and in particular the ¢-th part is divided into k; smaller parts, and
the 2n smaller parts can be partitioned to form two other balanced (but non-empty)
strings, each again divided into n parts.

Special treatment can be given to cases where wy, ..., w,, are all non-empty, but
imb(vy---vx) = 0™ for a proper non-empty subset {vi,...,vi} of
{wy,...,wy}, by deriving:

A(wy, .. wp) = A(vy, .o, 0k, &, 8) Alug, .. ty)
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for some uq, ..., u,, which allows use of the inductive hypothesis. Hence the inter-
esting case that remains is where imb(v; - - - v;;) = 0™ does not hold for any proper
non-empty subset {vq, ..., vi} of {wr, ..., wy}.

5 Special cases

5.1 The O, language

The case n = 1 has been ignored in the above. It is straightforward to show that O;
is generated by an MCFG of fanout 1, but this grammar G; has a slightly different
structure from the grammars GG,, (n > 2) that were defined above. The rules of G
are S(zy) — S(x) S(y), S(a1zar) — S(z), S(atza,) — S(z),and S(e) — ¢

The central observation in the proof by induction concerns strings in O of the
form ajway or of the form ayway. In the first case, the imbalance of the prefix a;
is a positive number and the imbalance of the prefix a;w is a negative number. This
implies that there must be a proper prefix a;w’ of a;w whose imbalance is 0!, which
means we can use the rule S(zy) — S(z) S(y) and the inductive hypothesis for two
shorter strings. The second case is symmetric.

5.2 The O, language

Conjecture 3 restricted to n = 2 was proved by Salvati (2015), using arguments
involving considerable sophistication. The proof is geometric in nature, interpreting
the imbalance of a series of prefixes of a string in Oy of increasing length as a path
in 2-dimensional space. The use of the complex exponential function seems to make
the proof difficult to generalize to higher dimensions.

An alternative proof is due to Nederhof (2016). It is similarly geometric in na-
ture, but avoids the complex exponential function. Its core argument divides 2-
dimensional space into an ‘above’ and a ‘below’. We will refer to this as the ‘partition
argument’. Before the argument can be applied, the paths must first be brought into
a normal form.

The proof requires all four binary rules of Ga:

A

(T1y1, T22) — (z1,22) A(y1,y2)
A(ziyr. y2w2) —  A(z1,22) A(y1,y2)
Alziyiz2,y2) — Az, 22) A(yr, v2)
Azy, y1a2y2) = Az, 32) A(yr, 42)
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5.3 The O3 language

Nederhof (2016) also sketches a potential generalization of the proof to n = 3. The
partition argument now relies on the (three plus six) rules:

A

(z191, v2y2, y3w3) — A1, 72, 23) A(y1, Y2, Y3)
A(z1y1, Y272, 23Y3) — A(z1, 22, 23) A(Y1, Y2, Y3)
A(y121, v2y2, 23Y3) — A1, 22, 23) A(y1, Y2, Y3)
A(z19172, T3Y2,Y3) = A1, 72, 23) A(y1, Y2, y3)
A(z19172, Y2, T3Y3) = A(z1, T2, 73) A(y1, Y2, y3)
A(z1y1, 22Y223,Y3) — A(z1, 22, 23) A(Y1, Y2, Y3)
Alz1y1, Y2, v2y3r3) = A(z1, 22, 73) A(Y1, Y2, Y3)
Az1,y122y2, Y323) — A(21, 22, 23) A(Y1, Y2, Y3)
A1, Y172, yar3ys) — A(z1, 72, 73) A(y1, Y2, y3)

In addition, we need a ‘corkscrew argument’, which requires three further rules:

A(T19172Y2, 73,Y3) = A(T1, 72, 73) A(y1, Y2, y3)
A(mlaylx2y2x37y3> — A(.'If]_,l'g., C53) A(yl7 y27y3)
A1, Y1, Y272y373) — A(71,72,73) A(y1, Y2, Y3)

It is remarkable that these 12 rules are only a portion of the 22 binary rules of Gj.
If however we remove any of the last three rules, then we cannot always use the
inductive hypothesis. For example, if we remove:

A(z1y122y2, T3, y3) = A1, 22, 23) A(Yy1. Y2, Y3)

then we can no longer handle A(a3 a3 a3 azasayayag, asay, asay ). The same applies
to the group of six rules. For example, if we remove:

A(x1y12, T3Y2,Yy3) — A(21, 72, 73) A(Y1, Y2, Y3)

then we can no longer handle A(asazasa1a301a3, a1 @3 a1, a3az). This can be ver-
ified by mechanically matching these nonterminal instances against the remaining
rules. We have not been able to ascertain that more than one of the first three rules
is necessary to always be able to apply the inductive hypothesis. Hence we cannot
exclude the possibility at this time that only 10 binary rules would suffice.

The main difficulty in obtaining a complete proof of Conjecture 3 restricted to
n = 3 pertains to the partition argument. This would again depend on a normal
form for paths, this time in 3-dimensional space. It seems much more difficult than
before to show that the normal form can be obtained while preserving appropriate
invariants.

280



28 Free word order and MCFLs

6 Conclusions

It is trivial to show that O; is generated by (G1, whereas it took great efforts to find
the first proof that O3 is generated by G'2. The second proof of the same result seems
to create realistic prospects that a proof may one day be found that (a subgrammar
of) G3 generates O3, but considerable challenges lie ahead. Very little is known for
n > 4.
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